Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT) have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may be infeasible in realistic healthcare scenarios due to the high scalability of modern healthcare networks and growing data privacy concerns. Federated Learning (FL), as an emerging distributed collaborative AI paradigm, is particularly attractive for smart healthcare, by coordinating multiple clients (e.g., hospitals) to perform AI training without sharing raw data. Accordingly, we provide a comprehensive survey on the use of FL in smart healthcare. First, we present the recent advances in FL, the motivations, and the requirements of using FL in smart healthcare. The recent FL designs for smart healthcare are then discussed, ranging from resource-aware FL, secure and privacy-aware FL to incentive FL and personalized FL. Subsequently, we provide a state-of-the-art review on the emerging applications of FL in key healthcare domains, including health data management, remote health monitoring, medical imaging, and COVID-19 detection. Several recent FL-based smart healthcare projects are analyzed, and the key lessons learned from the survey are also highlighted. Finally, we discuss interesting research challenges and possible directions for future FL research in smart healthcare.
In recent years, multi-access edge computing (MEC) has become a promising technology used in 5G networks based on its ability to offload computational tasks from mobile devices (MDs) to edge servers in order to address MD-specific limitations. Despite considerable research on computation offloading in 5G networks, this activity in multi-tier multi-MEC server systems continues to attract attention. Here, we investigated a two-tier computation-offloading strategy for multi-user multi-MEC servers in heterogeneous networks. For this scenario, we formulated a joint resource-allocation and computation-offloading decision strategy to minimize the total computing overhead of MDs, including completion time and energy consumption. The optimization problem was formulated as a mixed-integer nonlinear program problem of NP-hard complexity. Under complex optimization and various application constraints, we divided the original problem into two subproblems: decisions of resource allocation and computation offloading. We developed an efficient, low-complexity algorithm using particle swarm optimization capable of high-quality solutions and guaranteed convergence, with a high-level heuristic (i.e., meta-heuristic) that performed well at solving a challenging optimization problem. Simulation results indicated that the proposed algorithm significantly reduced the total computing overhead of MDs relative to several baseline methods while guaranteeing to converge to stable solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.