Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma (NHL) that is incurable with standard therapies. The genetic drivers of this cancer have not been firmly established and the features that contribute to differences in clinical course remain limited. To extend our understanding of the biological pathways involved in this malignancy, we performed a large-scale genomic analysis of MCL using data from 51 exomes and 34 genomes alongside previously published exome cohorts. To confirm our findings, we re-sequenced the genes identified in the exome cohort in 191 MCL tumors, each having clinical follow-up data. We confirmed the prognostic association of TP53 and NOTCH1 mutations. Our sequencing revealed novel recurrent non-coding mutations surrounding a single exon of the HNRNPH1 gene. In RNA-seq data from 103 of these cases, MCL tumors with these mutations had a distinct imbalance of HNRNPH1 isoforms. This altered splicing of HNRNPH1 was associated with inferior outcomes in MCL and showed a significant increase in protein expression by immunohistochemistry. We describe a functional role for these recurrent non-coding mutations in disrupting an auto-regulatory feedback mechanism, thereby deregulating HNRNPH1 protein expression. Taken together, these data strongly implicate a role for aberrant regulation of mRNA processing in MCL pathobiology.
Oligomannose-type glycans on HIV-1 gp120 form a patch that is targeted by several broadly neutralizing antibodies (bnAbs) and that therefore is of interest to vaccine design. However, attempts to elicit similar oligomannose-specific bnAbs by immunizing with oligomannosidic glycoconjugates have only been modestly successful so far. A common assumption is that eliciting oligomannose-specific bnAbs is hindered by B cell tolerance, resulting from the presented oligomannosides being sensed as self molecules. Here, we present data, along with existing scientific evidence, supporting an additional, or perhaps alternate, explanation: serum mannosidase trimming of the presented oligomannosides in vivo. Mannosidase trimming lessens the likelihood of eliciting antibodies with capacity to bind fullsized oligomannose, which typifies the binding mode of existing bnAbs to the oligomannose patch. The rapidity of the observed trimming suggests the need for immunization strategies and/or synthetic glycosides that readily avoid or resist mannosidase trimming upon immunization and can overcome possible tolerance restrictions.
Objectives Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma that is incurable with standard therapies. The genetic drivers of this cancer have not been firmly established and the features known to contribute to differences in clinical course remain limited. We previously discovered non-coding and silent mutations in HNRNPH1 that affect its splicing and contribute to poor outcomes for patients with MCL. We sought to extend our understanding of the mechanisms by which HNRNPH1 contributes to MCL pathology using a combination of in vitro models and integrative analysis of RNA sequencing from MCL tumors. Methods We previously sequenced ribosomal RNA-depleted RNA from 130 MCL tumors. Based on our earlier identification of mutations in HNRNPH1 and altered splicing of this gene, we performed differential splicing analyses using rMATS and leafcutter. We investigated the functional and phenotypic effect of deregulated hnRNP H1 protein through siRNA knockdown. Results Our previous work identified that splicing of HNRNPH1, and not total mRNA expression, correlated with protein abundance in MCL tumors. As a result, our analysis of alternative splicing focused on events associated with altered splicing of HNRNPH1. We identified 155 unique alternative splicing events (ΔPSI > 0.1, FDR < 0.1). Gene ontology analysis identified various aspects of RNA processing which are significantly enriched within this gene list, including mRNA splicing, transport, and metabolic process. This nominates HNRNPH1 as part of the complex network controlling alternative splicing within MCL. Available CLIP-seq in HeLa cells provides evidence for direct interactions between hnRNP H1 and transcripts identified by our analysis (e.g. RBM25, EIF4A1, HNRNPA2B1). Of the 155 events we identified, more than half involved retained introns. Generally, retained introns result in non-productive RNA species, which indicates that this program of intron retention in MCL is a mechanism by which protein abundance can be regulated by hnRNP H1. For all cases with available Mantle Cell Lymphoma International Prognostic Indicator (MIPI) classification, we determined the splicing ratio for HNRNPH1 and observed a general association between high MIPI scores and a lower ratio of non-productive HNRNPH1 transcripts. This suggested that the increased hnRNP H1 abundance we observed in HNRNPH1-mutant tumors contributes to increased proliferation of MCL cells. We verified this in vitro with siRNA knockdown of HNRNPH1 in HEK cells, which resulted in a significant decrease in cell proliferation. Conclusions We have described a pattern of alternative splicing in MCL that is associated with alterations in HNRNPH1 splicing and related protein abundance. The prevalence of retained introns suggests that hnRNP H1 regulates the abundance of protein-coding transcripts via alternative splicing coupled to nonsense-mediated decay. We continue to explore targets of hnRNP H1, a novel oncoprotein in MCL. Disclosures Morin: Celgene: Consultancy.
Introduction: Antepartum hemorrhage is the bleeding from the genital tract following the completion of 28 weeks of pregnancy till full term. It is an obstetrical emergency and a leading cause of maternal and perinatal death and morbidity. Objectives: This study was conducted to determine the frequency of maternal and fetal complications in women with antepartum hemorrhage. Methods: It was a cross sectional study held at the Department of Gynecology and Obstetrics unit IV, Liaquat University of Medical and Health Sciences, Jamshoro between 2017 and 2019. This study enrolled 158 women with a history of antepartum hemorrhage using non- probability consecutive sampling. The fetal and maternal outcomes of the patients were recorded. Maternal outcomes were assessed according to age, gravidity and gestational week. Data was analyzed in SPSS 20. Results: The average age of the women was 25.77±4.15 years. Anemia was the most common maternal outcome 102(64.6%) followed by disseminated intravascular coagulation (DIC) 24(15.2%), shock 12(7.6%), postpartum hemorrhage (PPH) 11(7%) and maternal mortality 5 (3.1%). Preterm birth and low APGAR score were the most frequently fetal outcomes that were observed in 69 (43.7%) and 50 (31.6%) cases, respectively. There was significant association of DIC with gravidity and gestational age. Anemia was significantly associated with gestational age more frequently among mothers with <37 weeks of gestational age. Conclusion: In conclusion, anemia was the most frequently encountered complication of antepartum hemorrhage, followed by DIC and shock. Multigravidity was a significant etiological factor in antepartum hemorrhage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.