The web provides excellent opportunities to businesses in various aspects of development such as finding a business partner online. However, with the rapid growth of web information, business users struggle with information overload and increasingly find it difficult to locate the right information at the right time. Meanwhile, small and medium businesses (SMBs), in particular, are seeking “one‐to‐one” e‐services from government in current highly competitive markets. How can business users be provided with information and services specific to their needs, rather than an undifferentiated mass of information? An effective solution proposed in this study is the development of personalized e‐services. Recommender systems is an effective approach for the implementation of Personalized E‐Service which has gained wide exposure in e‐commerce in recent years. Accordingly, this paper first presents a hybrid fuzzy semantic recommendation (HFSR) approach which combines item‐based fuzzy semantic similarity and item‐based fuzzy collaborative filtering (CF) similarity techniques. This paper then presents the implementation of the proposed approach into an intelligent recommendation system prototype called Smart BizSeeker, which can recommend relevant business partners to individual business users, particularly for SMBs. Experimental results show that the HFSR approach can help overcome the semantic limitations of classical CF‐based recommendation approaches, namely sparsity and new “cold start” item problems.
Abstract-Recommender Systems are used to mitigate the information overload problem in different domains by providing personalized recommendations for particular users based on their implicit and explicit preferences. However, Item-based Collaborative Filtering (CF) techniques, as the most popular techniques of recommender systems, suffer from sparsity and new item limitations which result in producing inaccurate recommendations. The use of items' semantic information besides the inclusion of multi-criteria ratings can successfully alleviate such problems and generate more accurate recommendations. This paper proposes an Item-based MultiCriteria Collaborative Filtering algorithm that integrates the items' semantic information and multi-criteria ratings of items to lessen known limitations of the item-based CF techniques. According to the experimental results, the proposed algorithm prove to be very effective in terms of dealing with both of the sparsity and new item problems and therefore produce more accurate recommendations when compared to standard itembased CF techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.