The presence of two thermal bands in Landsat 8 brings the opportunity to use either one or both of these bands to retrieve Land Surface Temperature (LST). In order to compare the performances of existing algorithms, we used four methods to retrieve LST from Landsat 8 and made an intercomparison among them. Apart from the direct use of the Radiative Transfer Equation (RTE), Single-Channel Algorithm and two Split-Window Algorithms were used taking an agricultural region in Bangladesh as the study area. The LSTs retrieved in the four methods were validated in two ways: first, an indirect validation against reference LST, which was obtained in the Atmospheric and Topographic CORection (ATCOR) software module; second, cross-validation with Terra MODerate Resolution Imaging Spectroradiometer (MODIS) daily LSTs that were obtained from the Application for Extracting and Exploring Analysis Ready Samples (A ρ ρ EEARS) online tool. Due to the absence of LST-monitoring radiosounding instruments surrounding the study area, in situ LSTs were not available; hence, validation of satellite retrieved LSTs against in situ LSTs was not performed. The atmospheric parameters necessary for the RTE-based method, as well as for other methods, were calculated from the National Centers for Environmental Prediction (NCEP) database using an online atmospheric correction calculator with MODerate resolution atmospheric TRANsmission (MODTRAN) codes. Root-mean-squared-error (RMSE) against reference LST, as well as mean bias error against both reference and MODIS daily LSTs, was used to interpret the relative accuracy of LST results. All four methods were found to result in acceptable LST products, leaving atmospheric water vapor content (w) as the important determinant for the precision result. Considering a set of several Landsat 8 images of different dates, Jiménez-Muñoz et al.’s (2014) Split-Window algorithm was found to result in the lowest mean RMSE of 1.19 ° C . Du et al.’s (2015) Split-Window algorithm resulted in mean RMSE of 1.50 ° C . The RTE-based direct method and the Single-Channel algorithm provided the mean RMSE of 2.47 ° C and 4.11 ° C , respectively. For Du et al.’s algorithm, the w range of 0.0 to 6.3 g cm−2 was considered, whereas for the other three methods, w values as retrieved from the NCEP database were considered for corresponding images. Land surface emissivity was retrieved through the Normalized Difference Vegetation Index (NDVI)-threshold method. This intercomparison study provides an LST retrieval methodology for Landsat 8 that involves four algorithms. It proves that (i) better LST results can be obtained using both thermal bands of Landsat 8; (ii) the NCEP database can be used to determine atmospheric parameters using the online calculator; (iii) MODIS daily LSTs from A ρ ρ EEARS can be used efficiently in cross-validation and intercomparison of Landsat 8 LST algorithms; and (iv) when in situ LST data are not available, the ATCOR-derived LSTs can be used for indirect verification and intercomparison of Landsat 8 LST algorithms.
Change is now a general phenomenon of Business environment. Managements are compelled to adapt with the changes to survive. The term re-engineering rises to adapt with the changes in terms of the process of business. However, critics doubt about the fad of re-engineering as a number of Business Process Re-engineering (BPR) initiatives have failed. Tempt of object orientation is increasing regarding the implementation of re-engineering. This paper reveals the relative relationship among the fundamental blocks of production process regarding the implementation of re-engineering in the SMEs sector. Relationships have been identified empirically through the survey conducted in the SMEs (manufacturing) sector of Bangladesh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.