Low aqueous solubility and poor bioavailability of curcumin have limited its application in various fields. One approach to address this issue is to formulate a nanosuspension that incorporates curcumin, which has been previously shown to exhibit remarkably improved solubility in comparison with that of a bare compound. In this study, the preparation process of curcumin nanosuspension was optimized with a median particle size as the outcome. Gum arabic was used as a natural polymeric surfactant and the suspension was formulated using high speed homogenization. Optimization results, realized via a response surface methodology, showed that a minimum median particle size (8.524 µm) could be attained under the following conditions: curcumin:gum arabic ratio of 1:6 g/g; homogenization speed of 8300 rpm and homogenization time of 40 min. Under these conditions, the particle size of obtained suspension was shown to be consistent for around seven days without major aggregation. The homogenization process could be scaled up to five times in terms of suspension volume. TEM also showed that curcumin nanoparticles had a nearly spherical shape and homogeneous structure with a size range of 40–80 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.