A movie recommender system has been proven to be a convincing implement on carrying out comprehensive and complicated recommendation which helps users find appropriate movies conveniently. It follows a mechanism that a user can be accurately recommended movies based on other similar interests, e.g. collaborative filtering, and the movies themselves, e.g. contentbased filtering. Therefore, the systems should come with predetermined information either by users or by movies. One interesting research question should be asked: "what if this information is missing or not manually manipulated?" The problem has not been addressed in the literature, especially for the 100K and 1M variations of the MovieLens datasets. This paper exploits the movie recommender system based on movies' genres and actors/actresses themselves as the input tags or tag interpolation. We apply tag-based filtering and collaborative filtering that can effectively predict a list of movies that is similar to the movie that a user has been watched. Due to not depending on users' profiles, our approach has eliminated the effect of the coldstart problem. The experiment results obtained on MovieLens datasets indicate that the proposed model may contribute adequate performance regarding efficiency and reliability, and thus provide better-personalized movie recommendations. A movie recommender system has been deployed to demonstrate our work. The collected datasets have been published on our Github repository to encourage further reproducibility and improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.