Abstract. Graph Drawing uses a well established set of complexity measures to determine the quality of a drawing, most notably the area of the drawing and the complexity of the edges. For contact representations the complexity of the shapes representing vertices also clearly contributes to the complexity of the drawing. Furthermore, if a contact representation does not fill its bounding shape completely, then also the complexity of its complement is visually salient. We study the complexity of contact representations with variable shapes, specifically mosaic drawings. Mosaic drawings are drawn on a tiling of the plane and represent vertices by configurations: simply-connected sets of tiles. The complement of a mosaic drawing with respect to its bounding rectangle is also a set of simply-connected tiles, the channels. We prove that simple mosaic drawings without channels necessarily require Ω(n 2 ) area. This bound is tight. If we use only straight channels, then every outerplanar graph with k ears requires at least Ω(nk) area. Also this bound is tight: we show how to draw outerplanar graphs with k ears in O(nk) area with L-shaped vertex configurations and straight channels. Finally, we argue that L-shaped channels are strictly more powerful than straight channels, but may still require Ω(n 7/6 ) area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.