Logit, probit and complementary log-log models are the most widely used models when binary dependent variables are available. Conventionally, these models have been frequentists. This paper aims to demonstrate how such models can be implemented relatively quickly and easily from a Bayesian framework using Gibbs sampling Markov chain Monte Carlo simulation methods in WinBUGS. We focus on the modeling and prediction of Down syndrome (DS) and Mental retardation (MR) data from an observational study at Kuwait Medical Genetic Center over a 30-year time period between 1979 and 2009. Modeling algorithms were used in two distinct ways; firstly, using three different methods at the disease level, including logistic, probit and cloglog models, and, secondly, using bivariate logistic regression to study the association between the two diseases in question. The models are compared in terms of their predictive ability via R2, adjusted R2, root mean square error (RMSE) and Bayesian Deviance Information Criterion (DIC). In the univariate analysis, the logistic model performed best, with R2 (0.1145), adjusted R2 (0.114), RMSE (0.3074) and DIC (7435.98) for DS, and R2 (0.0626), adjusted R2 (0.0621), RMSE (0.4676) and DIC (23120) for MR. In the bivariate case, results revealed that 7 and 8 out of the 10 selected covariates were significantly associated with DS and MR respectively, whilst none were associated with the interaction between the two outcomes. Bayesian methods are more flexible in handling complex non-standard models as well as they allow model fit and complexity to be assessed straightforwardly for non-nested hierarchical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.