Mixing of sediments by moving animals becomes apparent in the trace fossil record from about 550 million years ago (Ma), loosely overlapping with the tail end of the extreme carbonate carbon isotope δ C fluctuations that qualitatively distinguish the Proterozoic geochemical record from that of the Phanerozoic. These Precambrian-scale fluctuations in δ C (PSF-δ C ) remain enigmatic, due to their high amplitude and inclusion of global-scale negative δ C values, below anything attributable to mantle input. Here, we note that different biogeochemical-model scenarios plausibly explaining globally synchronous PSF-δ C converge: via mechanistic requirements for extensive anoxia in marine sediments to support sedimentary build-up of C-depleted carbon. We hypothesize that bioturbation qualitatively reduced marine sediment anoxia by exposing sediments to oxygenated overlying waters, which ultimately contributed to decreasing the carbon cycle's subsequent susceptibility to PSF- δ C . Bioturbation may also have reduced the quantity of (isotopically light) organic-derived carbon available to contribute to PSF- δ C via ocean crust carbonatization at depth. We conduct a comparative modelling exercise in which we introduce bioturbation to existing model scenarios for PSF- δ C : expressing both the anoxic proportion of marine sediments, and the global organic carbon burial efficiency, as a decreasing function of bioturbation. We find that bioturbation's oxygenating impact on sediments has the capacity to prevent PSF- δ C caused by authigenic carbonate precipitation or methanogenesis. Bioturbation's impact on the f-ratio via remineralization is partially offset by liberation of organic phosphate, some of which feeds back into new production. We emphasize that this study is semiquantitative, exploratory and intended merely to provide a qualitative theoretical framework within which bioturbation's impact on long-term, first-order δ C can be assessed (and it is hoped quantified in more detail by future work). With this proviso, we conclude that it is entirely plausible that bioturbation made a decisive contribution to the enigmatic directionality in the δ C record, from the Neoproterozoic-Cambrian boundary onwards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.