Accurate noise level estimation is essential to assure good performance of noise reduction filters. Noise contaminating raw images is typically modeled as additive white and Gaussian distributed (AWGN); however raw images are affected by a mixture of noise sources that overlap according to a signal dependent noise model. Hence, the assumption of constant noise level through all the dynamic range represents a simplification that does not allow precise sensor noise characterization and filtering; consequently, local noise standard deviation depends on signal levels measured at each location of the CFA (Color Filter Array) image.This work proposes a method for determining the noise curves that map each CFA signal intensity to its corresponding noise level, without the need of a controlled test environment and specific test patterns. The process consists in analyzing sets of heterogeneous raw CFA images, allowing noise characterization of any image sensor. In addition we show how the estimated noise level curves can be exploited to filter a CFA image, using an adaptive signal dependent Gaussian filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.