Augmented Lagrangian algorithms are very popular tools for solving nonlinear programming problems. At each outer iteration of these methods a simpler optimization problem is solved, for which efficient algorithms can be used, especially when the problems are large. The most famous Augmented Lagrangian algorithm for minimization with inequality constraints is known as Powell-Hestenes-Rockafellar (PHR) method. The main drawback of PHR is that the objective function of the subproblems is not twice continuously differentiable. This is the main motivation for the introduction of many alternative Augmented Lagrangian methods. Most of them have interesting interpretations as proximal point methods for solving the dual problem, when the original nonlinear programming problem is convex. In this paper a numerical comparison between many of these methods is performed using all the suitable problems of the CUTE collection.
We consider the proximal point method for solving unconstrained multiobjective programming problems including two families of real convex functions, one of them defined on the positive orthant and used for modifying a variant of the logarithm-quadratic regularization introduced recently and the other for defining a family of scalar representations based on 0-coercive convex functions. We show convergent results, in particular, each limit point of the sequence generated by the method is a weak Pareto solution. Numerical results over fourteen test problems are shown, some of them with complicated pareto sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.