It is known that complete multipartite graphs are determined by their distance spectrum but not by their adjacency spectrum. The Seidel spectrum of a graph G on more than one vertex does not determine the graph, since any graph obtained from G by Seidel switching has the same Seidel spectrum. We consider G to be determined by its Seidel spectrum, up to switching, if any graph with the same spectrum is switching equivalent to a graph isomorphic to G. It is shown that any graph which has the same spectrum as a complete k-partite graph is switching equivalent to a complete k-partite graph, and if the different partition sets sizes are p 1 , . . . , p l , and there are at least three partition sets of each size p i , i = 1, . . . , l, then G is determined, up to switching, by its Seidel spectrum. Sufficient conditions for a complete tripartite graph to be determined by its Seidel spectrum are discussed, and a conjecture is made on complete tripartite graphs on more than 18 vertices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.