Two novel antitumor alkaloids, Stephacidin A and B, were isolated from the solid fermentation of Aspergillus ochraceus WC76466. Both alkaloids exhibit in vitro cytotoxicity against a number of human tumor cell lines; however, stephacidin B demonstrated more potent and selective antitumor activities, especially against prostate testeosterone-dependent LNCaP cells with IC50 value of 60 nM. The structures of stephacidin A and B were established on the basis of the NMR data and X-ray crystallography. With 15 rings and 9 chiral centers, stephacidin B represents one of the most structurally complex and novel alkaloids occurring in nature.
Trimeric class I virus fusion proteins undergo a series of conformational rearrangements that leads to the association of C-and N-terminal heptad repeat domains in a ''trimer-of-hairpins'' structure, facilitating the apposition of viral and cellular membranes during fusion. This final fusion hairpin structure is sustained by protein-protein interactions, associations thought initially to be refractory to small-molecule inhibition because of the large surface area involved. By using a photoaffinity analog of a potent respiratory syncytial virus fusion inhibitor, we directly probed the interaction of the inhibitor with its fusion protein target. Studies have shown that these inhibitors bind within a hydrophobic cavity formed on the surface of the N-terminal heptad-repeat trimer. In the fusogenic state, this pocket is occupied by key amino acid residues from the C-terminal heptad repeat that stabilize the trimer-of-hairpins structure. The results indicate that a low-molecular-weight fusion inhibitor can interfere with the formation or consolidation of key structures within the hairpin moiety that are essential for membrane fusion. Because analogous cavities are present in many class I viruses, including HIV, these results demonstrate the feasibility of this approach as a strategy for drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.