The use of small unmanned aircraft systems (sUAS) for applications in the field of precision agriculture has demonstrated the need to produce temporally consistent imagery to allow for quantitative comparisons. In order for these aerial images to be used to identify actual changes on the ground, conversion of raw digital count to reflectance, or to an atmospherically normalized space, needs to be carried out. This paper will describe an experiment that compares the use of reflectance calibration panels, for use with the empirical line method (ELM), against a newly proposed ratio of the target radiance and the downwelling radiance, to predict the reflectance of known targets in the scene. We propose that the use of an on-board downwelling light sensor (DLS) may provide the sUAS remote sensing practitioner with an approach that does not require the expensive and time consuming task of placing known reflectance standards in the scene. Three calibration methods were tested in this study: 2-Point ELM, 1-Point ELM, and At-altitude Radiance Ratio (AARR). Our study indicates that the traditional 2-Point ELM produces the lowest mean error in band effective reflectance factor, 0.0165. The 1-Point ELM and AARR produce mean errors of 0.0343 and 0.0287 respectively. A modeling of the proposed AARR approach indicates that the technique has the potential to perform better than the 2-Point ELM method, with a 0.0026 mean error in band effective reflectance factor, indicating that this newly proposed technique may prove to be a viable alternative with suitable on-board sensors.
A model has been developed that simulates oxygen precipitation in silicon wafers during high temperature device processing. The approach used to calculate the nucleation and growth of oxygen precipitates is radically different from other approaches presented in the literature. A discrete rate equation representation of nucleation and growth has been transformed into a continuum representation in the form of a partial differential equation. This partial differential equation describing both the statistical clustering of oxygen during nucleation and the diffusion driven transport during precipitate growth is solved continuously starting from crystal growth through any arbitrary time-dependent temperature process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.