Yttrium doped LSMO (La 1−x Sr x MnO 3) was prepared using sol-gel technique and analysed for the insulator-metal transition from charge density variation in the unit cell with respect to different stoichiometric inclusion of yttrium. X-ray powder diffraction profiles of the samples were obtained and the well known Rietveld method and a versatile tool called maximum entropy method (MEM) were used for structural and profile refinement. The charge density in the unit cell was constructed using refined structure factors and was analysed. The charge ordering taking place in the insulator-metal transition was investigated and quantified. The insulator-metal transition was found to occur when 20% of La/Sr atoms were replaced by yttrium. The changes in the charge environment have also been analysed.
Charge density distribution in ampicillin trihydrate was investigated experimentally. Results were compared with the quantum calculations using density functional theory. The charge derived properties including Mulliken atomic charges, dipole moment, and molecular electrostatic potential were calculated. The multipole analysis was done for the refinement of experimental population parameters. The structure factors obtained from multipole treatment were used for the construction of Fourier maps. Topological properties of the charge distribution were discussed and the characteristics of (3, −1) critical points were analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.