Charcot‐Marie‐Tooth disease type 1A (CMT1A), the most frequent form of GAIT, is caused by a 1.5 Mb duplication on the short arm of chromosome 17. Patients with CMT1A typically have slowed nerve conduction velocities (NCVs), reduced compound motor and sensory nerve action potentials (CMAPs and SNAPs), distal weakness, sensory loss and decreased reflexes. In order to understand further the molecular pathogenesis of CMT1A, as well as to determine which features correlate with neurological dysfunction and might thus be amenable to treatment, we evaluated the clinical and electrophysiological phenotype in 42 patients with CMT1A. In these patients, muscle weakness, CMAP amplitudes and regeneration, motor unit number estimates correlated with clinical disability, while motor NCV did not. In addition, loss of joint position sense and reduction in SNAP amplitudes also correlated with clinical disability, while sensory NCV did not. Taken together, these data strongly support the hypothesis that neurological dysfunction and clinical disability in CMT1A are caused by loss or damage to large calibre motor and sensory axons. Therapeutic approaches to ameliorate disability in CMT1A, as in amyotrophic lateral sclerosis and other neurodegenerative diseases, should thus be directed towards preventing axonal degeneration and/or promoting axonal regeneration.
Physics is the interplay of energy and matter. Energy, in the form of light, interacting with matter, principally in the solid state, underpins this topical review. The subject is developed carefully and methodically, beginning with basic definitions pertaining to terahertz detectors and terahertz radiation, then proceeding systematically to delineate characteristics of terahertz photons and terahertz detectors in more detail. In-between, the intimate connection linking terahertz sensors and terahertz sources is highlighted-an important aspect unfortunately often overlooked or ignored when terahertz detectors are discussed in isolation. At the centre of this topical review are the various physical mechanisms by which electromagnetic radiation of terahertz frequencies interacts with matter. The logic is to present first the underlying physical principles of detection before presenting the practical implementation in a specific device, rather than the other way around. A taxonomy of terahertz detectors is then proposed based on the underlying physical principles of detection. Following on from this classification, stateof-the-art terahertz detectors are surveyed and appraised; this overview constitutes the longest section of the review. Key detector parameters which inform applications are then presented and tabulated. Finally, the present state-of-the-art is anchored within the wider scientific context of historical developments and future prospects.
Advances in solid-state device design now allow the spectrum of transmitted electrons in thermionic and thermoelectric devices to be engineered in ways that were not previously possible. Here we show that the shape of the electron energy spectrum in these devices has a significant impact on their performance. We distinguish between traditional thermionic devices where electron momentum is filtered in the direction of transport only and a second type, in which the electron filtering occurs according to total electron momentum. Such "total momentum filtered" thermionic devices could potentially be implemented in, for example, quantum dot superlattices. It is shown that whilst total momentum filtered thermionic devices may achieve an efficiency equal to the Carnot value, traditional thermionic devices are limited to an efficiency below this. Our second main result is that the electronic efficiency of a device is not only improved by reducing the width of the transmission filter as has previously been shown, but also strongly depends on whether the transmission probability rises sharply from zero to full transmission. The benefit of increasing efficiency through a sharply rising transmission probability is that it can be achieved without sacrificing device power, in contrast to the use of a narrow transmission filter which can greatly reduce power. We show that devices that have a sharply rising transmission probability significantly outperform those that do not and that such transmission probabilities may be achieved with practical single and multibarrier devices. We discuss how the shape of the electron energy spectrum will also have an effect on the electronic efficiency of thermoelectric devices due to mathematical equivalences in the ballistic and diffusive formalisms. Finally, we present an experimental measure that might be used to provide an indication of the nature of the electron energy spectrum and the electronic efficiency of a ballistic device.
Infrared reflection and transmission as a function of temperature have been measured on single crystals of Cu3Bi(SeO3)2O2Cl. The complex dielectric function and optical properties along all three principal axes of the orthorhombic cell were obtained via Kramers-Kronig analysis and by fits to a Drude-Lorentz model. Below 115 K, 16 additional modes (8(E â)+6(E b )+2(E ĉ)) appear in the phonon spectra; however, powder x-ray diffraction measurements do not detect a new structure at 85 K. Potential explanations for the new phonon modes are discussed. Transmission in the far infrared as a function of temperature has revealed magnetic excitations originating below the magnetic ordering temperature (Tc ∼24 K). The origin of the excitations in the magnetically ordered state will be discussed in terms of their response to different polarizations of incident light, behavior in externally-applied magnetic fields, and the anisotropic magnetic properties of Cu3Bi(SeO3)2O2Cl as determined by d.c. susceptibility measurements.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.