Bovine herpesvirus type 1 (BHV-1) is an important component of the bovine respiratory disease complex (BRDC) in cattle. Following primary intranasal and ocular infection of cattle, BHV-1 establishes lifelong latent infection in trigeminal ganglia (TG). Upon reactivation from latency, the virus is transported from neuronal cell bodies in the TG to projected nerve endings in nose and cornea of latently infected cattle where the virus shedding occurs. This property of BHV-1 plays a significant role in the pathogenesis of BRDC and maintenance of BHV-1 in the cattle population. Recently, we have reported that a glycoprotein E (gE) cytoplasmic tail-truncated BHV-1 (BHV-1 gEAm453) did not reactivate from latency and was not shed in the nasal and ocular secretions of calves and rabbits. Here we describe the methods to establish rabbit primary dorsal root ganglia (DRG) neuron cultures in a microfluidic chamber system and to characterize in vitro anterograde and retrograde axonal transport properties of BHV-1 gE-deleted and BHV-1 cytoplasmic tail-truncated gEAm453 mutant viruses relative to BHV-1 gEAm453-rescued/wild-type viruses. The results clearly demonstrated that whereas the BHV-1 gE-deleted, BHV-1 gEAm453, and BHV-1 gEAm453-rescued/wild-type viruses were transported equally efficiently in the retrograde direction, only the BHV-1 gEAm453-rescued/wild-type virus was transported anterogradely. Therefore, we have concluded that sequences within the BHV-1 gE cytoplasmic tail are essential for anterograde axonal transport and that primary rabbit DRG neuronal cultures in the microfluidic chambers are suitable for BHV-1 neuronal transport studies.
Bovine herpesvirus type 1 (BHV-1) is an important component of the bovine respiratory disease complex (BRDC) in cattle. Following primary intranasal and ocular infection of cattle, BHV-1 establishes lifelong latent infection in trigeminal ganglia (TG). Upon reactivation from latency, the virus is transported from neuronal cell bodies in the TG to projected nerve endings in nose and cornea of latently infected cattle where the virus shedding occurs. This property of BHV-1 plays a significant role in the pathogenesis of BRDC and maintenance of BHV-1 in the cattle population. Recently, we have reported that a glycoprotein E (gE) cytoplasmic tail-truncated BHV-1 (BHV-1 gEAm453) did not reactivate from latency and was not shed in the nasal and ocular secretions of calves and rabbits. Here we describe the methods to establish rabbit primary dorsal root ganglia (DRG) neuron cultures in a microfluidic chamber system and to characterize in vitro anterograde and retrograde axonal transport properties of BHV-1 gE-deleted and BHV-1 cytoplasmic tail-truncated gEAm453 mutant viruses relative to BHV-1 gEAm453-rescued/wild-type viruses. The results clearly demonstrated that whereas the BHV-1 gE-deleted, BHV-1 gEAm453, and BHV-1 gEAm453-rescued/wild-type viruses were transported equally efficiently in the retrograde direction, only the BHV-1 gEAm453-rescued/wild-type virus was transported anterogradely. Therefore, we have concluded that sequences within the BHV-1 gE cytoplasmic tail are essential for anterograde axonal transport and that primary rabbit DRG neuronal cultures in the microfluidic chambers are suitable for BHV-1 neuronal transport studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.