In children with cancer, the heterogeneity in ototoxicity occurrence after similar treatment suggests a role for genetic susceptibility. Using a genome-wide association study (GWAS) approach, we identified a genetic variant in TCERG1L (rs893507) to be associated with hearing loss in 390 non-cranial irradiated, cisplatin-treated children with cancer. These results were replicated in two independent, similarly treated cohorts (n = 192 and 188, respectively) (combined cohort: P = 5.3 × 10−10, OR 3.11, 95% CI 2.2–4.5). Modulating TCERG1L expression in cultured human cells revealed significantly altered cellular responses to cisplatin-induced cytokine secretion and toxicity. These results contribute to insights into the genetic and pathophysiological basis of cisplatin-induced ototoxicity.
BackgroundDietary restriction (DR) is a well-established universal anti-aging intervention, and is neuroprotective in multiple models of nervous system disease, including models with cerebellar pathology. The beneficial effects of DR are associated with a rearrangement of gene expression that modulate metabolic and cytoprotective pathways. However, the effect of DR on the cerebellar transcriptome remained to be fully defined.ResultsHere we analyzed the effect of a classical 30% DR protocol on the transcriptome of cerebellar cortex of young-adult male mice using RNAseq. We found that about 5% of expressed genes were differentially expressed in DR cerebellum, the far majority of whom showing subtle expression changes. A large proportion of down-regulated genes are implicated in signaling pathways, in particular pathways associated with neuronal signaling. DR up regulated pathways in large part were associated with cytoprotection and DNA repair. Analysis of the expression of cell-specific gene sets, indicated a strong enrichment of DR down genes in Purkinje cells, while genes specifically associated with granule cells did not show such a preferential down-regulation.ConclusionOur data show that DR may have a clear effect on the cerebellar transcriptome inducing a mild shift from physiology towards maintenance and repair, and having cell-type specific effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.