To determine whether atrial natriuretic peptide (ANP) plays a physiological role in modulating pulmonary hypertensive responses, we studied mice with gene-targeted disruption of the ANP gene under normoxic and chronically hypoxic conditions. Right ventricular peak pressure (RVPP), right ventricle weight- and left ventricle plus septum weight-to-body weight ratios [RV/BW and (LV+S)/BW, respectively], and muscularization of pulmonary vessels were measured in wild-type mice (+/+) and in mice heterozygous (+/−) and homozygous (−/−) for a disrupted proANP gene after 3 wk of normoxia or hypobaric hypoxia (0.5 atm). Under normoxic conditions, homozygous mutants had higher RVPP (22 ± 2 vs. 15 ± 1 mmHg; P < 0.05) than wild-type mice and greater RV/BW (1.22 ± 0.08 vs. 0.94 ± 0.07 and 0.76 ± 0.04 mg/g; P < 0.05) and (LV+S)/BW (4.74 ± 0.42 vs. 3.53 ± 0.14 and 3.18 ± 0.18 mg/g; P < 0.05) than heterozygous or wild-type mice, respectively. Three weeks of hypoxia increased RVPP in heterozygous and wild-type mice and increased RV/BW and RV/(LV+S) in all genotypes compared with their normoxic control animals but had no effect on (LV+S)/BW. After 3 wk of hypoxia, homozygous mutants had higher RVPP (29 ± 3 vs. 23 ± 1 and 22 ± 2 mmHg; P < 0.05), RV/BW (2.03 ± 0.14 vs. 1.46 ± 0.04 and 1.33 ± 0.08 mg/g; P < 0.05), and (LV+S)/BW (4.76 ± 0.23 vs. 3.82 ± 0.09 and 3.44 ± 0.14 mg/g; P < 0.05) than heterozygous or wild-type mice, respectively. The percent muscularization of peripheral pulmonary vessels was greater in homozygous mutants than that in heterozygous or wild-type mice under both normoxic and hypoxic conditions. We conclude that endogenous ANP plays a physiological role in modulating pulmonary arterial pressure, cardiac hypertrophy, and pulmonary vascular remodeling under normoxic and hypoxic conditions.
Atrial and brain natriuretic peptides (ANP and BNP, respectively) are potent pulmonary vasodilators that are upregulated in hypoxia-adapted rats and may protect against hypoxic pulmonary hypertension. To test the hypothesis that C-type natriuretic peptide (CNP) also modulates pulmonary vascular responses to hypoxia, we compared the vasodilator effect of CNP with that of ANP on pulmonary arterial rings, thoracic aortic rings, and isolated perfused lungs obtained from normoxic and hypoxia-adapted rats. We also measured CNP and ANP levels in heart, lung, brain, and plasma in normoxic and hypoxia-adapted rats. Steady-state CNP mRNA levels were quantified in the same organs by relative RT-PCR. CNP was a less potent vasodilator than ANP in preconstricted thoracic aortic and pulmonary arterial rings and in isolated lungs from normoxic and hypoxia-adapted rats. Chronic hypoxia increased plasma CNP (15 ± 2 vs. 6 ± 1 pg/ml; P < 0.05) and decreased CNP in the right atrium (35 ± 14 vs. 65 ± 17 pg/mg protein; P < 0.05) and in the lung (3 ± 1 vs. 14 ± 3 pg/mg protein; P < 0.05) but had no effect on CNP in brain or right ventricle. Chronic hypoxia increased ANP levels fivefold in the right ventricle (49 ± 5 vs. 11 ± 2 pg/mg protein; P < 0.05) but had no effect on ANP in lung or brain. There was a trend toward decreased ANP levels in the right atrium (2,009 ± 323 vs. 2,934 ± 397 pg/mg protein; P = not significant). No differences in CNP transcript levels were observed between the two groups of rats except that the right atrial CNP mRNA levels were lower in hypoxia-adapted rats. We conclude that CNP is a less potent pulmonary vasodilator than ANP in normoxic and hypoxia-adapted rats and that hypoxia raises circulating CNP levels without increasing cardiopulmonary CNP expression. These findings suggest that CNP may be less important than ANP or BNP in protecting against hypoxic pulmonary hypertension in rats.
This paper describes how the Telstar satellite has performed in space. Included is information on changes in the temperature, spin rate, spin‐axis precession, orbital parameters and power levels of the satellite signals, and comments on the behavior of the electrical circuits in the space environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.