Excitotoxicity, defined as cell death resulting from the toxic actions of excitatory amino acids, is actually considered as a major factor contributing to the early stage of ischemic cell death in stroke. In stroke, once vessel occlusion is produced, the disruptions to the blood flow in the affected areas decrease the delivery of oxygen and metabolic substrates to neurons. Consequently, the lack of oxygen interrupts oxidative phosphorylation by the mitochondria and drastically reduces cellular ATP production, which results in a rapid decline in cellular ATP. After several minutes, inhibition of the Na + /K +-ATPase function causes a profound loss of ionic gradients and depolarization of regulated neurons, which leads to excessive release of excitatory amino acids-particularly glutamate-to the extracellular compartment. The presence of excessive amounts of glutamate into the synapses and extrasynaptic sites can lead eventually to neuronal death. Excitotoxicity leads to a number of deleterious consequences, including impairment of cellular calcium homeostasis, generation of free radicals and oxidative stress, mitochondrial damage, and activation of several transcription factors and their genes expression. All these mechanisms' acting synergy can cause neuron death by apoptosis. Oxidative stress induced by excitotoxicity is considered to be the main event leading to brain damage after stroke. On the basis of experimental models, there is ample evidence of the role of oxidative stress in ischemic brain damage.
Phosphoinositide 3-kinase alpha (PI3Kα) H1047R mutations are activating oncogenic events that occur in ~15% of advanced breast cancers. While there is one PI3Kα inhibitor FDA-approved for patients with PI3Kα-mutated breast cancer, and many others in clinical development, all of these agents inhibit wild-type PI3Kα and its mutated form with approximate equal potency. As a result, their efficacy is limited by toxicities associated with on target wild-type PI3Kα inhibition, notably hyperglycemia as well as cutaneous and GI toxicity. LOX-22783 is a highly potent, mutant-selective and brain-penetrant allosteric PI3Kα H1047R inhibitor. Here, we describe the preclinical profile of LOX-22783. H1047R selectivity was measured using biochemical kinase activity and cell-titer Glo and signal transduction assays. Tumor growth inhibition, pharmacokinetic and pharmacodynamic effects were assessed in in vivo studies using xenograft and patient-derived xenograft (PDX)-models. LOX-22783 inhibited growth and signaling responses in multiple H1047R-driven breast cancer cell lines and demonstrated high selectivity for H1047R mutated PI3Kα (EC50 values <5 nM) relative to wild-type PI3Kα (EC50 >250 nM) as well as the other wild-type PI3K isoforms (beta, gamma, and delta, all EC50 >250nM). In enzyme and cell-based assays, LOX-22783 dissociated from PI3Kα H1047R at a slower rate (3-6 hrs) compared to alpelisib (≤10 mins), potentially allowing for extended inhibition of PI3Kα H1047R by LOX-22783. LOX-22783 also normalized the EGF-stimulated membrane-localization of PI3Kα H1047R while alpelisib did not. LOX-22783 was highly kinome-selective when assayed at 3 µM, with no inhibitory activity on 17 lipid kinases or 374 protein kinases. In preclinical species, LOX-22783 demonstrated high oral bioavailability, including exposure in the CNS, a common site of metastases for patients with breast cancer. In vivo, LOX-22783 demonstrated dose-dependent tumor regression in H1047R breast cancer models without inducing hyperglycemia or other toxicities. Tumor pharmacodynamic analyses confirmed successful pathway inhibition. At doses resulting in 90% pathway inhibition, tumor regressions of ≥60% were observed. This wide therapeutic index is predicted to allow for maximizing dose intensity and efficacy in patients, without wild-type PI3Kα inhibition limiting target coverage for the H1047R mutant form. These data demonstrate that LOX-22783 potently and selectively inhibits mutant H1047R, but not wild-type PI3Kα, or other PI3K isoforms. LOX-22783 binds to an allosteric pocket distinct from the ATP binding site used by the approved and investigational PI3Kα inhibitors. We hypothesize that this profile will lead to differentiated efficacy and tolerability for patients with PI3Kα H1047R-mutated cancers, with the additional potential to address brain metastases. An IND submission is planned for 2022. Citation Format: Anke Klippel, Rui Wang, Loredana Puca, Andrew Lee Faber, Weihua Shen, Shripad V. Bhagwat, Kannan Karukurichi, Feiyu Fred Zhang, Carmen Perez, Ramon Rama, Ana Ramos, Yi Zheng, Zahid Bonday, James Thomas, Harold B. Brooks, Lisa J. Kindler, Sarah M. Bogner, Parisa Zolfaghari, Mark Hicks II, Sophie Callies, Brian Mattioni, Laurie LeBrun, Jim Durbin, Erin Anderson, Chris Mayne, Edward Kesicki, Gabrielle Kolakowski, Steven W. Andrews, Barbara J. Brandhuber. Preclinical characterization of LOX-22783, a highly potent, mutant-selective and brain-penetrant allosteric PI3Kα H1047R inhibitor [abstract]. In: Proceedings of the AACR-NCI-EORTC Virtual International Conference on Molecular Targets and Cancer Therapeutics; 2021 Oct 7-10. Philadelphia (PA): AACR; Mol Cancer Ther 2021;20(12 Suppl):Abstract nr P142.
Background: Prostate cancer (PCa) is a leading cause of cancer death in men and represents a substantial public health burden [1]. Most PCa are primarily dependent on androgen receptor (AR) activity and castration is an effective approach to treat PCa patients. Despite the recent significant treatment advances, PCa inevitably becomes androgen-independent and progresses to the castration-resistant disease state (CRPC), the deadliest form of the disease [2]. Progression of the disease to castration-resistance is often mediated by a reactivation of AR signaling pathway [3]. Upon androgen stimulation, expression of D-type cyclin is up-regulated which results in an increased cyclin-dependent kinase 4 and 6 (CDK4/6) activity and stimulation of the cell cycle. [4]; Thus, inhibition of CDK4/6 may represent an effective strategy to delay or overcome primary androgen resistance. Abemacicilb is a CDK4 and CDK6 inhibitor with a clinical safety profile allowing continuous dosing to achieve sustained target inhibition [5]. Abemaciclib is FDA-approved for the treatment of patients with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer [6,7]. Methods: The anti-proliferative activity of the abemaciclib was evaluated using iodide staining in a panel of 15 PCa cell lines. In order to get new insights on abemaciclib effects, deeper in vitro analysis was carried out in LNCaP, PC-3 and 22RV1, as ADT responding and resistant PCa cell models, respectively. Cell cycle analysis was done by FACS and High Content Imaging; cellular signaling was assessed by Western blotting. Apoptosis was measured by detection of caspase 3 and Tunnel assay. 22RV1 xenograft mouse model was used to evaluate abemaciclib efficacy in vivo. Results: Anti-proliferative activity of abemaciclib was observed across a panel of PCa cell lines, mainly in hormone receptor positive (AR+) cell lines. Overall, abemaciclib efficiently inhibited CDK4 and CDK6 which prevented the phosphorylation of Rb with the consequent effect in cell cycle and induced a G1 cell cycle arrest. Prolonged treatment promoted a marked senescence phenotype indicated by an increased b-galactosidase staining and morphological changes to result ultimately in apoptosis. In 22RV1 xenograft models, abemaciclib significantly reduced tumor growth. Taken together these data provide insights on sensitivity of PCa models to abemaciclib and its mode of action, demonstrating the potential of this drug for the treatment of prostate cancer patients. Conclusions: Abemaciclib inhibits proliferation of AR positive prostate cancer cell lines by inducing cell cycle arrest mediated by inhibition of Rb phosphorylation. Abemaciclib is a CDK4/6 inhibitor with potential to treat prostate cancer by blocking cell proliferation leading to induction of senescence and apoptosis. Citation Format: Raquel Torres-Guzmán, Carmen Baquero, Maria Patricia Ganado, Carlos Marugán, Huimin Bian, Yi Zeng, Ramón Rama, Jian Du, Maria José Lallena. Targeting prostate cancer with the CDK4 and CDK6 inhibitor abemaciclib [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 4850.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.