Superconductivity is one of the most important phenomena in solid state physics. Its theoretical framework at low critical temperature Tc is based on Bardeen, Cooper and Schrieffer theory (BCS). But at high Tc above 135, this theory suffers from some setbacks. It cannot explain how the resistivity abruptly drops to zero below Tc , besides the explanation of the so called pseudo gap, isotope and pressure effect, in addition to the phase transition from insulating to super-conductivity state. The models proposed to cure this drawback are mainly based on Hubbard model which has a mathematical complex framework. In this work a model based on quantum mechanics besides generalized special relativity and plasma physics. It is utilized to get new modified Schr?dinger equation sensitive to temperature. An expression for quantum resistance is also obtained which shows existence of critical temperature beyond which the resistance drops to zero. It gives an expression which shows the relation between the energy gap and Tc . These expressions are mathematically simple and are in conformity with experimental results.
In this study the electromagnetic theory and quantum mechanics are utilized to find the resistivity in terms of electric and magnetic susceptibility in which the electron is considered as a wave. Critical temperature of the wire at which the resistance vanishes is found. In this case the resistance being imaginary which leads the real part of the resistance to real zero at critical temperature and the material becomes super conductor in this case. If one considers the motion of electron in the presence of inner magnetic field and resistance force, a new formula for the conductivity is to be found; this formula states that the material under investigation becomes a superconductor at critical temperature and depends on the strength of the magnetic field and friction resistance, and the substance conductivity is found to be super at all temperatures beyond the critical temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.