Predicting performance is very significant in the education world nowadays. This paper will describe the process of doing a prediction of student performance by using data mining technique. 257 data sets were taken from the student of semester 6 KPTM that involved four (4) academic programs which are Diploma in Computer System and Networking, Diploma in Information Technology, Diploma in Business Management and Diploma in Accountancy. Knowledge Discovery in Database (KDD) was used as a guide to the process of finding and extracting a knowledge from the dataset. A decision tree and linear regression were used to analyze the dataset based on variables selected. The variables used are Gender, Financing, SPM, GPASem1, GPASem2, GPASem3, GPASem4, GPASem5 and CGPA as a dependent variable. The result from this indicate the significant variable that contribute most to the students' performance. Based on the analysis, the decision tree shows that GPASem1 has a strong significant to the CGPA final semester of the student and the prediction accuracy is 82%. The linear regression shows that the GPA for each semester has a highly significant with the dependent variable with 96.2% prediction accuracy. By having this information, the management of KPTM can make a plan to ensure that the student can maintain a good result and at the same time to make a strategic plans for those without a good result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.