This article presents a measurement of νe interactions without pions in the final state using the MicroBooNE experiment and an investigation into the excess of low-energy electromagnetic events observed by the MiniBooNE collaboration. The measurement is performed in exclusive channels with (1eNp0π) and without (1e0p0π) visible final-state protons using 6.86×10 20 protons on target of data collected from the Booster Neutrino Beam at Fermilab. Events are reconstructed with the Pandora pattern recognition toolkit and selected using additional topological information from the MicroBooNE liquid argon time projection chamber. Using a goodness-of-fit test the data are found to be consistent with the predicted number of events with nominal flux and interaction models with a p-value of 0.098 in the two channels combined. A model based on the low-energy excess observed in MiniBooNE is introduced to quantify the strength of a possible νe excess. The analysis suggests that if an excess is present, it is not consistent with a simple scaling of the νe contribution to the flux. Combined, the 1eNp0π and 1e0p0π channels do not give a conclusive indication about the tested model, but separately they both disfavor the low-energy excess model at >90% CL. The observation in the most sensitive 1eNp0π channel is below the prediction and consistent with no excess. In the less sensitive 1e0p0π channel the observation at low energy is above the prediction, while overall there is agreement over the full energy spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.