Summary1. Edge effects of native forest fragmentation have been well studied, but there are few studies of open-ground habitats fragmented by plantation forests. We measure forestry edge effects on open-ground breeding birds, following one of Europe's biggest and most controversial land-use transformations. 2. The 'Flow Country' of northern Scotland is one of the world's greatest expanses of blanket bog. It became fragmented by conifer forests planted in the late 20th century, and these now adjoin open peatlands protected under European conservation legislation. Detrimental edge effects on breeding birds were anticipated, but not apparent shortly after planting. 3. Using survey data collected in [2003][2004][2005][2006], and logistic regression modelling, we tested whether breeding distributions of three wader species of international conservation concern, dunlin, European golden plover and common greenshank, were influenced by distance to forest edge, controlling for habitat and topography. 4. All three species were more likely to occupy flatter, more exposed ground close to bog pools and were influenced by peatland vegetation structure. There was an additive and adverse effect of proximity to forest edge for dunlin and European golden plover, but not common greenshank. This effect was strongest within 700 m of forest edges. We used these results to predict which areas should benefit most from removal of adjacent forestry and so guide maintenance and restoration of the bird interests of the protected areas. 5. Synthesis and applications. Edge effects of mature forestry on dunlin and golden plover are apparent over several hundred metres and are now being used to guide forest planning in northern Scotland. The scale of edge effect is broadly consistent with other avian studies in open-ground habitats across Eurasia and North America, so buffer zones of this order are consistent with possible impacts of plantation forestry on open-ground habitats of bird conservation interest. Given renewed interest in conifer afforestation as a climate change mitigation measure, an improved understanding of edge effects and the mechanisms through which they operate is vital to managing plantation forestry in ways that maintain open-ground landscapes of high conservation value.
Satellite Earth Observation (EO) is often used as a cost-effective method to report on the condition of remote and inaccessible peatland areas. Current EO techniques are primarily limited to reporting on the vegetation classes and properties of the immediate peat surface using optical data, which can be used to infer peatland condition. Another useful indicator of peatland condition is that of surface motion, which has the potential to report on mass accumulation and loss of peat. Interferometic SAR (InSAR) techniques can provide this using data from space. However, the most common InSAR techniques for information extraction, such as Persistent Scatterers' Interferometry (PSI), have seen limited application over peat as they are primarily tuned to work in areas of high coherence (i.e., on hard, non-vegetated surfaces only). A new InSAR technique, called the Intermittent Small BAseline Subset (ISBAS) method, has been recently developed to provide measurements over vegetated areas from SAR data acquired by satellite sensors. This paper examines the feasibility of the ISBAS technique for monitoring long-term surface motion over peatland areas of the Flow Country, in the northeast of Scotland. In particular, the surface motions estimated are compared with ground data over a small forested area (namely the Bad a Cheo forest Reserve). Two sets of satellite SAR data are used: ERS C-band images, covering the period 1992-2000, and Sentinel-1 C-band images, covering the period 2015-2016. We show that the ISBAS measurements are able to identify surface motion over peatland areas, where subsidence is a consequence of known land cover/land use. In particular, the ISBAS products agree with the trend of surface motion, but there are uncertainties with their magnitude and direction (vertical). It is concluded that there is a potential for the ISBAS method to be able to report on trends in subsidence and uplift over peatland areas, and this paper suggests avenues for further investigation, but this requires a well-resourced validation campaign.
Peatlands are one of the largest terrestrial stores of carbon. Carbon exchange in peatlands is often assessed solely by measurement of contemporary fluxes; however, these fluxes frequently indicate a much stronger sink strength than that measured by the rate of C accumulation in the peat profile over longer timescales. Here we compare profile-based measurements of C accumulation with the published net ecosystem C balance for the largest peatland area in Britain, the Flow Country of northern Scotland. We estimate the long-term rate of C accumulation to be 15.4 g C m −2 yr −1 for a site where a recent eddy covariance study has suggested contemporary C uptake more than six times greater (99.37 g C m −2 yr −1 ). Our estimate is supported by two further long-term C accumulation records from nearby sites which give comparable results. We demonstrate that a strong contemporary C sink strength may not equate to a strong long-term sink and explore reasons for this disparity. We recommend that contemporary C sequestration should be viewed in the context of the long-term ecological drivers, such as fires, ecohydrological feedbacks and the changing quality of litter inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.