Molecular analysis of predation, through polymerase chain reaction amplification of prey remains within the faeces or digestive systems of predators, is a rapidly growing field, impeded by a lack of readily accessible advice on best practice. Here, we review the techniques used to date and provide guidelines accessible to those new to this field or from a different molecular biology background. Optimization begins with field collection, sample preservation, predator dissection and DNA extraction techniques, all designed to ensure good quality, uncontaminated DNA from semidigested samples. The advantages of nuclear vs. mitochondrial DNA as primer targets are reviewed, along with choice of genes and advice on primer design to maximize specificity and detection periods following ingestion of the prey by the predators. Primer and assay optimization are discussed, including crossamplification tests and calibratory feeding experiments. Once primers have been made, the screening of field samples must guard against (through appropriate controls) cross contamination. Multiplex polymerase chain reactions provide a means of screening for many different species simultaneously. We discuss visualization of amplicons on gels, with and without incorporation of fluorescent primers. In more specialized areas, we examine the utility of temperature and denaturing gradient gel electrophoresis to examine responses of predators to prey diversity, and review the potential of quantitative polymerase chain reaction systems to quantify predation. Alternative routes by which prey DNA might get into the guts of a predator (scavenging, secondary predation) are highlighted. We look ahead to new technologies, including microarrays and pyrosequencing, which might one day be applied to this field.
DNA-based techniques are providing valuable new approaches to tracking predator-prey interactions. The gut contents of invertebrate predators can be analysed using species-specific primers to amplify prey DNA to confirm trophic links. The problem is that each predator needs to be analysed with primers for the tens of potential prey available at a field site, even though the mean number of species detected in each gut may be as few as one or two. Conducting all these PCRs (polymerase chain reactions) is a lengthy process, and effectively precludes the analysis of the hundreds of predators that might be required for a meaningful ecological study. We report a rapid, more sensitive and practical approach. Multiplex PCRs, incorporating fluorescent markers, were found to be effective at amplifying degraded DNA from predators' guts and could amplify mitochondrial DNA fragments from 10+ species simultaneously without 'drop outs'. The combined PCR products were then separated by size on polyacrylamide gels on an ABI377 sequencer. New primers to detect the remains of aphids, earthworms, weevils and molluscs in the guts of carabid predators were developed and characterized. The multiplex-sequencer approach was then applied to field-caught beetles, some of which contained DNA from as many as four different prey at once. The main prey detected in the beetles proved to be earthworms and molluscs, although aphids and weevils were also consumed. The potential of this system for use in food-web research is discussed.
Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species-level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica. There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research.
Abstract. Geographic variation can lead to the evolution of different local varieties within a given species, therefore influencing its distribution and genetic structure. We investigated the contribution of plasticity and local adaptation to the performance of a common aquatic plant (Potamogeton pectinatus) in contrasting climates, using reciprocal transplants at three experimental sites across a latitudinal cline in Europe. Plants from 54 genets, originally collected from 14 populations situated within four climatic regions (subarctic, cold temperate, mild temperate, and mediterranean) were grown in three different localities within three of these regions (cold temperate, Norway; mild temperate, The Netherlands; mediterranean, Spain). Tuber production was highest for the mild-temperate genets, irrespective of locality where the genets were grown. Selection coefficients indicated that populations at the European center of the species distribution perform better than all other populations, at all sites. However, marginal populations showed changes in life-history traits, such as compressed life cycles in the north and true perenniality in the south, that may allow them to perform better locally, at the limits of their distribution range. Our results thus suggest that local adaptation may overlap spatially with center-periphery gradients in performance caused by genetic factors (such as genetic drift and inbreeding in range-marginal populations).
Niche and neutral processes drive community assembly and metacommunity dynamics, but their relative importance might vary with the spatial scale. The contribution of niche processes is generally expected to increase with increasing spatial extent at a higher rate than that of neutral processes. However, the extent to what community composition is limited by dispersal (usually considered a neutral process) over increasing spatial scales might depend on the dispersal capacity of composing species. To investigate the mechanisms underlying the distribution and diversity of species known to have great powers of dispersal (hundreds of kilometres), we analysed the relative importance of niche processes and dispersal limitation in determining beta‐diversity patterns of aquatic plants and cladocerans over regional (up to 300 km) and continental (up to 3300 km) scales. Both taxonomic groups were surveyed in five different European regions and presented extremely high levels of beta‐diversity, both within and among regions. High beta‐diversity was primarily explained by species replacement (turnover) rather than differences in species richness (i.e. nestedness). Abiotic and biotic variables were the main drivers of community composition. Within some regions, small‐scale connectivity and the spatial configuration of sampled communities explained a significant, though smaller, fraction of compositional variation, particularly for aquatic plants. At continental scale (among regions), a significant fraction of compositional variation was explained by a combination of spatial effects (exclusive contribution of regions) and regionally‐structured environmental variables. Our results suggest that, although dispersal limitation might affect species composition in some regions, aquatic plant and cladoceran communities are not generally limited by dispersal at the regional scale (up to 300 km). Species sorting mediated by environmental variation might explain the high species turnover of aquatic plants and cladocerans at regional scale, while biogeographic processes enhanced by dispersal limitation among regions might determine the composition of regional biotas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.