This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library “MaStar”). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).
Quasi-periodic eruptions (QPEs) are very-high-amplitude bursts of X-ray radiation recurring every few hours and originating near the central supermassive black holes of galactic nuclei1,2. It is currently unknown what triggers these events, how long they last and how they are connected to the physical properties of the inner accretion flows. Previously, only two such sources were known, found either serendipitously or in archival data1,2, with emission lines in their optical spectra classifying their nuclei as hosting an actively accreting supermassive black hole3,4. Here we report observations of QPEs in two further galaxies, obtained with a blind and systematic search of half of the X-ray sky. The optical spectra of these galaxies show no signature of black hole activity, indicating that a pre-existing accretion flow that is typical of active galactic nuclei is not required to trigger these events. Indeed, the periods, amplitudes and profiles of the QPEs reported here are inconsistent with current models that invoke radiation-pressure-driven instabilities in the accretion disk5–9. Instead, QPEs might be driven by an orbiting compact object. Furthermore, their observed properties require the mass of the secondary object to be much smaller than that of the main body10, and future X-ray observations may constrain possible changes in their period owing to orbital evolution. This model could make QPEs a viable candidate for the electromagnetic counterparts of so-called extreme-mass-ratio inspirals11–13, with considerable implications for multi-messenger astrophysics and cosmology14,15.
Context. GSN 069 is the first galactic nucleus where quasi-periodic eruptions (QPEs) have been identified in December 2018. These are high-amplitude, soft X-ray bursts recurring every ∼ 9 hr, lasting ∼ 1 hr, and during which the X-ray count rate increases by up to two orders of magnitude with respect to an otherwise stable quiescent level. The X-ray spectral properties and the long-term evolution of GSN 069 in the first few years since its first X-ray detection in 2010 are consistent with a long-lived tidal disruption event (TDE). Aims. We aim to derive the properties of QPEs and of the long-term X-ray evolution in GSN 069 over the past 12 yr. Methods. We analyse timing and spectral X-ray data from 11 XMM-Newton, one Chandra, and 34 Swift observations of GSN 069 on timescales ranging from minutes to years. Results. QPEs in GSN 069 are a transient phenomenon with a lifetime of 1.05 yr. The QPE intensity and recurrence time oscillate and allow for alternating strong-weak QPEs and long-short recurrence times to be defined. In observations with QPEs, the quiescent level exhibits a quasi-periodic oscillation with a period equal to the average separation between consecutive QPEs. The QPE spectral evolution is consistent with thermal emission from a very compact region that heats up quickly and subsequently cools down via X-ray emission while expanding by a factor of ∼ 3 in radius. The long-term evolution of the quiescent level is characterised by two repeating TDEs ∼ 9 yr apart. We detect a precursor X-ray flare prior to the second TDE that may be associated with the circularisation phase during disc formation. A similar precursor flare is tentatively detected just before the first TDE. Conclusions. We provide a comprehensive summary of observational results that can be used to inform further theoretical and numerical studies on the origin of QPEs in GSN 069 and we discuss our results in terms of currently proposed QPE models. Future X-ray observations of GSN 069 promise that the QPE origin and the relation between QPEs and repeating TDEs in this galactic nucleus will be constrained, with consequences for the other sources where QPEs have been identified.
Context. High-redshift quasars signpost the early accretion history of the Universe. The penetrating nature of X-rays enables a less absorption-biased census of the population of these luminous and persistent sources compared to optical/near-infrared colour selection. The ongoing SRG/eROSITA X-ray all-sky survey offers a unique opportunity to uncover the bright end of the high-z quasar population and probe new regions of colour parameter space. Aims. We searched for high-z quasars within the X-ray source population detected in the contiguous ~140 deg2 field observed by eROSITA during the performance verification phase. With the purpose of demonstrating the unique survey science capabilities of eROSITA, this field was observed at the depth of the final all-sky survey. The blind X-ray selection of high-redshift sources in a large contiguous, near-uniform survey with a well-understood selection function can be directly translated into constraints on the X-ray luminosity function (XLF), which encodes the luminosity-dependent evolution of accretion through cosmic time. Methods. We collected the available spectroscopic information in the eFEDS field, including the sample of all currently known optically selected z > 5.5 quasars and cross-matched secure Legacy DR8 counterparts of eROSITA-detected X-ray point-like sources with this spectroscopic sample. Results. We report the X-ray detection of eFEDSU J083644.0+005459, an eROSITA source securely matched to the well-known quasar SDSS J083643.85+005453.3 (z = 5.81). The soft X-ray flux of the source derived from eROSITA is consistent with previous Chandra observations. The detection of SDSS J083643.85+005453.3 allows us to place the first constraints on the XLF at z > 5.5 based on a secure spectroscopic redshift. Compared to extrapolations from lower-redshift observations, this favours a relatively flat slope for the XLF at z ~ 6 beyond L*, the knee in the luminosity function. In addition, we report the detection of the quasar with LOFAR at 145 MHz and ASKAP at 888 MHz. The reported flux densities confirm a spectral flattening at lower frequencies in the emission of the radio core, indicating that SDSS J083643.85+005453.3 could be a (sub-) gigahertz peaked spectrum source. The inferred spectral shape and the parsec-scale radio morphology of SDSS J083643.85+005453.3 indicate that it is in an early stage of its evolution into a large-scale radio source or confined in a dense environment. We find no indications for a strong jet contribution to the X-ray emission of the quasar, which is therefore likely to be linked to accretion processes. Conclusions. Our results indicate that the population of X-ray luminous AGNs at high redshift may be larger than previously thought. From our XLF constraints, we make the conservative prediction that eROSITA will detect ~90 X-ray luminous AGNs at redshifts 5.7 < z < 6.4 in the full-sky survey (De+RU). While subject to different jet physics, both high-redshift quasars detected by eROSITA so far are radio-loud; a hint at the great potential of combined X-ray and radio surveys for the search of luminous high-redshift quasars.
Novae are caused by runaway thermonuclear burning in the hydrogen-rich envelopes of accreting white dwarfs, which results in the envelope to expand rapidly and to eject most of its mass 1,2 . For more than 30 years, nova theory has predicted the existence of a "fireball" phase following directly the runaway fusion, which should be observable as a short, bright, and soft X-ray flash before the nova becomes visible in the optical 3,4,5 . Here we present the unequivocal detection of an extremely bright and very soft X-ray flash of the classical Galactic nova YZ Reticuli 11 hours prior to its 9 mag optical brightening. No X-ray source was detected 4 hours before and after the event, constraining the duration of the flash to shorter than 8 hours. In agreement with theoretical predictions 4,6,7,8 , the source's spectral shape is consistent with a black body of 3.27 +0.11 −0.33 × 10 5 K (28.2 +0.9 −2.8 eV), or a white dwarf atmosphere, radiating at the Eddington luminosity, with a photosphere that is only slightly larger than a typical white dwarf. This detection of the expanding white dwarf photosphere before the ejection of the envelope provides the last link of the predicted photospheric lightcurve evolution and opens a new window to measure the total nova energetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.