Octreotide LAR significantly lengthens time to tumor progression compared with placebo in patients with functionally active and inactive metastatic midgut NETs. Because of the low number of observed deaths, survival analysis was not confirmatory.
A highly specific monoclonal antibody directed against the C-terminal part of glucagon-like peptide-1 (GLP-1) was raised to immunohistochemically evaluate the distribution of GLP-1 containing cells in the entire gastrointestinal tract including pancreas of rat, pig and man. In the pancreas GLP-1-immunoreactive cells were found variously shaped and predominantly located in the periphery of the islets. Ultrastructurally, GLP-1 was co-localized with glucagon in the alpha-granula of A-cells and was mainly restricted to the electrondense core. In the intestine open type cells reaching the lumen via a slender apical process were stained with the GLP-1 antibody. They occurred in all parts of the crypts but predominantly in the basal portion. The density of GLP-1 immunoreactive cells varied between species in a characteristic order: rat greater than pig greater than man. In pig and human gut a large number of cells occurred in the distal jejunum and ileum. A continuous increase of cell densities was found from the proximal to the distal colon resulting in highest numbers in the rectum. In rats the highest cell density occurred in the ileum. Again, a continuous increase of GLP-1-positive cell numbers was evident from the proximal to the distal portion of small and large bowel. GLP-1 was partly co-localized with PYY. The GLP-1 positive cells appeared electronmicroscopically as L-cells with the typical large granula. This morphological data indicates that GLP-1-releasing cells in the small intestine are appropriately positioned in the distal part to sense and respond to the presence of nutrients that have escaped the absorptive surface of the upper small intestine.
Contrast-enhanced computed tomography (CT) of the neck-thorax-abdomen and pelvis, including 3-phase examination of the liver, constitutes the basic imaging for primary neuroendocrine tumor (NET) diagnosis, staging, surveillance, and therapy monitoring. CT characterization of lymph nodes is difficult because of inadequate size criteria (short axis diameter), and bone metastases are often missed. Contrast-enhanced magnetic resonance imaging (MRI) including diffusion-weighted imaging is preferred for the examination of the liver, pancreas, brain and bone. MRI may miss small lung metastases. MRI is less well suited than CT for the examination of extended body areas because of the longer examination procedure. Ultrasonography (US) frequently provides the initial diagnosis of liver metastases and contrast-enhanced US is excellent to characterize liver lesions that remain equivocal on CT/MRI. US is the method of choice to guide the biopsy needle for the histopathological NET diagnosis. US cannot visualize thoracic NET lesions for which CT-guided biopsy therefore is used. Endocopic US is the most sensitive method to diagnose pancreatic NETs, and additionally allows for biopsy. Intraoperative US facilitates lesion detection in the pancreas and liver. Somatostatin receptor imaging should be a part of the tumor staging, preoperative imaging and restaging, for which 68Ga-DOTA-somatostatin analog PET/CT is recommended, which is vastly superior to somatostatin receptor scintigraphy, and facilitates the diagnosis of most types of NET lesions, for example lymph node metastases, bone metastases, liver metastases, peritoneal lesions, and primary small intestinal NETs. 18FDG-PET/CT is better suited for G3 and high G2 NETs, which generally have higher glucose metabolism and less somatostatin receptor expression than low-grade NETs, and additionally provides prognostic information.
The nutrient-dependent glucagon-like peptide-1 (7-36) amide (GLP-1) release was studied in comparison to the glucose-dependent insulin-releasing polypeptide (GIP) response in 10 healthy volunteers each undergoing various protocols. Plasma samples were saved up to 120 min after challenges by oral, intravenous or intraduodenal administration of nutrients. Basal plasma-GLP-1 concentrations ranged between 0.4 and 1.4 pM, maximal postprandial GLP-1 levels peaked between 10 and 12 pM. Intravenous glucose (25 g i.v.) did not change basal GLP-1 levels. Oral administration of glucose (50 g) induced a biphasic GLP-1 release peaking at 30-60 min and a biphasic GIP release peaking at 5 and 45 min. This increase paralleled the secretion of insulin. Oral galactose (100 g) and amino acids (25 g) also induced a rapid plasma GLP-1 response. After fat (67 g corn oil) a strong and long-lasting ( > 120 min) increase of GLP-1 plasma levels occurred. When a mixed liquid meal was given (6 g soybean oil, 5g casein, 13 g glucose) immunoreactive (IR)-GLP-l rapidly increased and peaked after 5 min with declining levels after 30 min. In response to an intraduodenal infusion of a small glucose load (5.34 g within 120 min) a rapid, short-lasting GLP-1 response occurred whereas plasma GIP and insulin levels remained unaltered. Luminal perfusion of an isolated vascularly perfused rat ileum with a polydiet induced a rapid rise of portally released IR-GLP-1 which was followed by a sustained release. Glucose evoked sodium-dependently a sharp increase of IR-GLP-1 levels followed by a plateau release. The intraluminal infusion of a mixture of amino acids or fat was without any effect on IR-GLP-1. We hypothesize that in contrast to GIP the GLP-1 release from L cells is triggered by nervous reflexes, by putative humoral factor(s) being released from the upper small intestine in addition to nutrient stimuli acting at the luminal surface of the gut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.