Based on the full BABAR data sample, we report improved measurements of the ratios RðDÞ ¼ BðB ! D À Þ=BðB ! D' À ' Þ and RðD Ã Þ ¼ BðB ! D Ã À Þ=BðB ! D Ã ' À ' Þ, where ' refers to either an electron or muon. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure RðDÞ ¼ 0:440 AE 0:058 AE 0:042 and RðD Ã Þ ¼ 0:332 AE 0:024 AE 0:018, which exceed the standard model expectations by 2:0 and 2:7, respectively. Taken together, the results disagree with these expectations at the 3:4 level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. Kinematic distributions presented here exclude large portions of the more general type III two-Higgs-doublet model, but there are solutions within this model compatible with the results.
Based on the full BABAR data sample, we report improved measurements of the ratios R(D(*))=B(B[over ¯]→D(*)τ(-)ν[over ¯](τ))/B(B[over ¯]→D(*)ℓ(ℓ)(-)ν[over ¯](ℓ)), where ℓ is either e or μ. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D)=0.440±0.058±0.042 and R(D(*))=0.332±0.024±0.018, which exceed the standard model expectations by 2.0σ and 2.7σ, respectively. Taken together, our results disagree with these expectations at the 3.4σ level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.
We report a measurement of the branching fraction ratios R(D ( * ) ) ofB → D ( * ) τ −ν τ relative tō B → D ( * ) −ν (where = e or µ) using the full Belle data sample of 772 × 10 6 BB pairs collected at the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e + e − collider. The measured values are R(D) = 0.375 ± 0.064(stat.) ± 0.026(syst.) and R(D * ) = 0.293 ± 0.038(stat.) ± 0.015(syst.). The analysis uses hadronic reconstruction of the tag-side B meson and purely leptonic τ decays. The results are consistent with earlier measurements and do not show a significant deviation from the standard model prediction.
We report the first measurement of the τ lepton polarization P_{τ}(D^{*}) in the decay B[over ¯]→D^{*}τ^{-}ν[over ¯]_{τ} as well as a new measurement of the ratio of the branching fractions R(D^{*})=B(B[over ¯]→D^{*}τ^{-}ν[over ¯]_{τ})/B(B[over ¯]→D^{*}ℓ^{-}ν[over ¯]_{ℓ}), where ℓ^{-} denotes an electron or a muon, and the τ is reconstructed in the modes τ^{-}→π^{-}ν_{τ} and τ^{-}→ρ^{-}ν_{τ}. We use the full data sample of 772×10^{6} BB[over ¯] pairs recorded with the Belle detector at the KEKB electron-positron collider. Our results, P_{τ}(D^{*})=-0.38±0.51(stat)_{-0.16}^{+0.21}(syst) and R(D^{*})=0.270±0.035(stat)_{-0.025}^{+0.028}(syst), are consistent with the theoretical predictions of the standard model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.