That bronchial carcinoma is not an inevitable consequence of cigarette smoking has stimulated the search for host factors that might influence the susceptibility of the individual smoker. One plausible host factor would be a polymorphic gene controlling the metabolic oxidative activation of chemical carcinogens, giving rise to wide inter-subject variation in the generation of cancer-inducing and/or promoting species. Recently, three genetic polymorphisms of human metabolic oxidation have been demonstrated (as characterized by debrisoquine, mephenytoin and carbocysteine), with the metabolism of several substrates exhibiting the phenomenon. Debrisoquine 4-hydroxylation segregates into two human phenotypes, each comprising characteristic metabolic capability. We report here the frequency of debrisoquine 4-hydroxylation phenotypes in age-, sex- and smoking history-matched bronchial carcinoma and control patients. Cancer patients showed a preponderance of probable homozygous dominant extensive metabolizers (78.8%) with few recessive poor metabolizers (1.6%) compared with smoking controls (27.8% and 9.0% respectively). We conclude that the gene controlling debrisoquine 4-hydroxylation may be a host genetic determinant of susceptibility to lung cancer in smokers and that it represents a marker to assist in assessing individual risk.
Trimethylamine (TMA) and its N-oxide (TMAO) are normal components of human urine. They are present in the diet and also derived from the enterobacterial metabolism of precursors such as choline. Dietary TMA is almost entirely metabolized to and excreted as TMAO. However, the extent to which TMA undergoes N-oxidation appears to be polymorphic in a British white population study (n = 169). Two propositi were identified with relative TMA N-oxidation deficiency that was further confirmed by oral challenge with TMA (600 mg). The study of the families of the two propositi, as well as those of two identified subjects with trimethylaminuria, under both normal dietary conditions and after oral TMA challenge strongly indicates that the conditions of impaired N-oxidation is inherited as a recessive trait. It is proposed that the N-oxidation of TMA in humans is polymorphic and under single gene diallelic control in which individuals who are homozygous for the variant allele exhibit marked N-oxidation deficiency and trimethylaminuria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.