The flow within an axial-flow spiral inducer impeller is complex and three-dimensional. The long but tightly-spiralled passages give rise to secondary flow fields strongly influenced by the blade walls. Flow analysis in such an impeller is carried out by a three-dimensional viscous flow code and compared with previously published LDV measurements. Due to the extreme blade angles of the inducer, an unconventional meshing strategy is required in order to prevent high mesh non-orthogonality. Details of that strategy are provided. Tip clearance modelling was not incorporated in this first stage of investigation. Despite this, the flow analysis reveals the pattern of development of the secondary flow field along the length of the high solidity passage consistent with the LDV data but in much greater detail than was possible with the limited capability of the measurement system. Predicted flow patterns upstream suggest preconditions for the initiation of the observed induction of upstream flow swirl at reduced flow rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.