Magnetic skyrmions are non-trivial spin textures that resist external disturbances and are promising candidates for use in next generation spintronic devices. However, a major challenge in the realization of devices based on skyrmions is the stabilization of ordered arrangements of these spin textures under ambient temperature and zero applied field conditions. Multilayers of ferromagnetic materials (Co) interspersed with heavy metals with strong spin–orbit coupling (Pt and Ta), exhibit interesting properties, as the Dzyaloshinskii–Moriya interaction, which is an anti-symmetric exchange interaction that tilts the spins of neighboring layers, helps to stabilize skyrmions. In this work we study the formation and stabilization of magnetic skyrmions in Pt/Co/Ta films using a first order reversal curve (FORC) analysis, obtained from Hall effect measurements. The analysis of the FORC Hall diagrams was used to determine the intensity of the magnetic fields that should be applied to nucleate and stabilize skyrmions at remanence. Magnetic force microscopy images and micromagnetic simulations were compared to determine the correlation of the domain textures with the applied field and magnetic parameters of the multilayers.
Devices based on spin rectification effects are of great interest for broadband communication applications, since they allow the rectification of radio frequency signals by simple ferromagnetic materials. The phenomenon is enhanced at ferromagnetic resonance condition, which may be attained when an external magnetic field is applied. The necessity of such field, however, hinders technological applications. Exploring spin rectification and spin Hall effects in exchange-biased samples, we were able to rectify radio frequency signals without an external applied magnetic field. Direct voltages of the order of μV were obtained when Ta/NiFe/FeMn/Ta thin films were exposed to microwaves in a shorted microstrip line for a relatively broad frequency range. Connecting the films to a resistive load, we estimated the fraction of the incident radio frequency power converted into usable dc power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.