BACKGROUND AND PURPOSEATP is released in response to cellular damage, and P2X7 receptors have an essential role in the onset and maintenance of pathological changes. Haemorrhagic cystitis (HC) is a well-known adverse effect of therapy with cyclophosphamide used for the treatment of many solid tumours and autoimmune conditions. Here we have evaluated the role of P2X7 receptors in a model of HC induced by cyclophosphamide. EXPERIMENTAL APPROACHEffects of pharmacological antagonism or genetic deletion of P2X7 receptor on cyclophosphamide-induced HC in mice was assessed by nociceptive and inflammatory measures. In addition, the presence of immunoreactive P2X7 receptors was assessed by immunohistochemistry. KEY RESULTSPretreatment with the selective P2X7 receptor antagonist A-438079 or genetic ablation of P2X7 receptors reduced nociceptive behaviour scores in the HC model. The same strategies decreased both oedema and haemorrhage indices, on macroscopic or histological evaluation. Treatment with A-438079 decreased the staining for c-Fos in the lumbar spinal cord and brain cortical areas. Treatment with A-438079 also prevented the increase of urinary bladder myeloperoxidase activity and macrophage migration induced by cyclophosphamide and reduced the tissue levels of IL-1b and TNF-a. Finally, P2X7 receptors were markedly up-regulated in the bladders of mice with cyclophosphamide-induced HC. CONCLUSIONS AND IMPLICATIONSP2X7 receptors were significantly involved in a model of HC induced by cyclophosphamide. Pharmacological inhibition of these receptors might represent a new therapeutic option for this pathological condition. Abbreviations
BACKGROUND AND PURPOSESpinal voltage-gated calcium channels (VGCCs) are pivotal regulators of painful and inflammatory alterations, representing attractive therapeutic targets. We examined the effects of epidural administration of the P/Q-and N-type VGCC blockers Tx3-3 and Phα1β, respectively, isolated from the spider Phoneutria nigriventer, on symptomatic, inflammatory and functional changes allied to mouse cyclophosphamide (CPA)-induced haemorrhagic cystitis (HC). The effects of P. nigriventer-derived toxins were compared with those displayed by MVIIC and MVIIA, extracted from the cone snail Conus magus. EXPERIMENTAL APPROACHHC was induced by a single i.p. injection of CPA (300 mg·kg -1 ). Dose-and time-related effects of spinally administered P/Q and N-type VGCC blockers were assessed on nociceptive behaviour and macroscopic inflammation elicited by CPA. The effects of toxins were also evaluated on cell migration, cytokine production, oxidative stress, functional cystometry alterations and TRPV1, TRPA1 and NK1 receptor mRNA expression. KEY RESULTSThe spinal blockage of P/Q-type VGCC by Tx3-3 and MVIIC or N-type VGCC by Phα1β attenuated nociceptive and inflammatory events associated with HC, including bladder oxidative stress and cytokine production. CPA produced a slight increase in bladder TRPV1 and TRPA1 mRNA expression, which was reversed by all the toxins tested. Noteworthy, Phα1β strongly prevented bladder neutrophil migration, besides HC-related functional alterations, and its effects were potentiated by co-injecting the selective NK1 receptor antagonist CP-96345. CONCLUSIONS AND IMPLICATIONSOur results shed new light on the role of spinal P/Q and N-type VGCC in bladder dysfunctions, pointing out Phα1β as a promising alternative for treating complications associated with CPA-induced HC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.