Traditionally, the susceptibility of Alloy 22 (N06022) to suffer crevice corrosion has been measured using the Cyclic Potentiodynamic Polarization (CPP) technique (ASTM G 61). When the alloy is not very susceptible to crevice corrosion, the values of repassivation potential obtained using the CPP technique are not highly reproducible. To circumvent the large uncertainty in the values of the repassivation potential by the CPP method, the repassivation potential of Alloy 22 may be measured using a slower method that combines sequentially potentiodynamic, galvanostatic, and potentio-static treatments (this method is called the Tsujikawa-Hisamatsu Electrochemical or THE method). In the THE method the anodic charge is applied to the specimen in a more controlled manner, which avoids driving the alloy to transpassivity and therefore results in more reproducible repassivation potential values. Results using THE method under various testing conditions are presented. A new standard has been prepared for ASTM balloting for the THE method. The round robin matrix results are also discussed.
In conditions where tight crevices exist in hot chloride containing solutions Alloy 22 may suffer crevice corrosion. The occurrence (or not) of crevice corrosion in a given environment (e.g, salt concentration and temperature), is governed by the values of the critical potential (E,",) for crevice corrosion and the corrosion potential (E,,,). This paper discusses the evolution of E,,, and corrosion rate (CR) of creviced Alloy 22 specimens in 5 M calcium chloride (CaCI2) at 120°C. Tested specimens included non-creviced rods and multiple creviced assemblies (MCA) both non-welded (wrought) and welded. Results show that Alloy 22 suffers crevice corrosion under the open circuit conditions in the aerated hot CaC12 brine. However, after more than a year of immersion the propagation of crevice corrosion was not significant. The general corrosion rate decreased or remained unchanged as the immersion time increased. For rods and MCA specimens, the corrosion rate was lower than 100 nrnlyear after more than a year immersion time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.