SUMMARYQuadrature rules are developed for exactly integrating products of polynomials and generalized functions over triangular and tetrahedral domains. These quadrature rules greatly simplify the implementation of finite element methods that involve integrals over volumes and interfaces that are not coincident with the element boundaries. Specifically, the integrands considered here consist of a quadratic polynomial multiplied by a Heaviside or Dirac delta function operating on a linear polynomial. This form allows for exact integration of expressions obtained from linear finite elements over domains and interfaces defined by a linear level set function. Exact quadrature rules are derived that involve fixed quadrature point locations with weights that depend continuously on the nodal level set values. Compared with methods involving explicit integration over subdomains, the quadrature rules developed here accommodate degenerate interface geometries without any need for special consideration and provide analytical Jacobian information describing the dependence of the integrals on the nodal level set values. The accuracy of the method is demonstrated for a simple conduction problem with the Neumann and Robin-type boundary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.