We propose a framework for multimodal sentiment analysis and emotion recognition using convolutional neural network-based feature extraction from text and visual modalities. We obtain a performance improvement of 10% over the state of the art by combining visual, text and audio features. We also discuss some major issues frequently ignored in multimodal sentiment analysis research: the role of speakerindependent models, importance of the modalities and generalizability. The paper thus serve as a new benchmark for further research in multimodal sentiment analysis and also demonstrates the different facets of analysis to be considered while performing such tasks.
The concept of fuzzy sets is one of the most fundamental and influential tools in the development of computational intelligence. In this paper the fuzzy pincer search algorithm is proposed. It generates fuzzy association rules by adopting combined top-down and bottom-up approaches. A fuzzy grid representation is used to reduce the number of scans of the database and our algorithm trims down the number of candidate fuzzy grids at each level. It has been observed that fuzzy association rules provide more realistic visualization of the knowledge extracted from databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.