In the quest for new energy sources, the research on controlled thermonuclear fusion 1 has been boosted by the start of the construction phase of the International Thermonuclear Experimental Reactor (ITER). ITER is based on the tokamak magnetic configuration 3, which is the best performing one in terms of energy confinement. Alternative concepts are however actively researched, which in the long term could be considered for a second generation of reactors. Here, we show results concerning one of these configurations, the reversed-field pinch 4,5 (RFP). By increasing the plasma current, a spontaneous transition to a helical equilibrium occurs, with a change of magnetic topology. Partially conserved magnetic flux surfaces emerge within residual magnetic chaos, resulting in the onset of a transport barrier. This is a structural change and sheds new light on the potential of the RFP as the basis for a low-magnetic-field ohmic fusion reactor.The main magnetic field configurations studied for the confinement of toroidal fusion-relevant plasmas are the tokamak 3 , the stellarator 6 and the reversed-field pinch 4,5 (RFP). In the tokamak, a strong magnetic field is produced in the toroidal direction by a set of coils approximating a toroidal solenoid, and the poloidal field generated by a toroidal current flowing into the plasma gives the field lines a weak helical twist. This is the configuration that has been most studied and has achieved the best levels of energy confinement time. Thus, it is the natural choice for the International Thermonuclear Experimental Reactor, which has the mission of demonstrating the scientific and technical feasibility of controlled fusion with magnetic confinement.The RFP, like the tokamak, is axisymmetric and exploits the pinch effect due to a current flowing in a plasma embedded in a toroidal magnetic field. The main difference is that, for a given plasma current, the toroidal magnetic field in a RFP is one order of magnitude smaller than in a tokamak, and is mainly generated by currents flowing in the plasma itself. This feature is underlying the main potential advantage of the RFP as a reactor concept, namely the capability of achieving fusion conditions with ohmic heating only in a much simpler and compact device. In the past, this positive feature was overcome by the poorer stability properties, which led to the growth and saturation of several magnetohydrodynamic (MHD) instabilities, eventually downgrading the confinement performance. These instabilities, represented by Fourier modes in the poloidal and toroidal angles θ and φ as exp [i(mθ − nφ) were considered as an unavoidable ingredient of the dynamo self-organization process 4,8,9 , necessary for the sustainment of the configuration in time. The occurrence of several MHD modes resonating on different plasma layers gives rise to overlapping magnetic islands, which result in a chaotic region, extending over most of the plasma volume 10 , where the magnetic surfaces are destroyed and the confinement level is modest. This conditi...
levels which might have a significant role in the light shift of the 22p level due to the 1.06-/im laser field are 6s, 7s, Ad, and 5d. These are far from being resonantly coupled to the 22p level, at least 1700 cm" 1 away. Their relative positions are such that their combined effects are partially cancelled* A rough evaluation showed that under these conditions the 5d level, which is expected to be responsible for the largest effect, contributes to the shift of the 22p level an amount of approximately 3xl0" 3 MHz/ MW-cm' 2 . This is at least 4 orders of magnitude less than the measured shift, and is thus completely negligible, With respect to the shift Lv g of the ground state, since it cannot be measured alone the best procedure is to calculate it as carefully and precisely possible. A calculation based on Fig. 1 has been carried out. 6 The result is &v g = -26.3 MHz/MW-cm" 2 . The dashed line in Fig. 3 corresponds to the sum of the two calculated shifts Ai/ e + Ay g , whereas the straight line corresponds to a least-squares fit on the measured shifts. Agreement between experimental and theoretical results is satisfactory.To conclude, this experiment provides clear evidence for the shift of a Rydberg level, due to an intense and strongly nonresonant em field. It is of interest to note that in a pure quantum treat-PACS numbers: 52.55.Gb, 52.35.Py On the PDX tokamak, large-amplitude magnetohydrodynamic (MHD) fluctuations have been observed during plasma heating by injection of high-ment, radiative corrections can be interpreted as the sum of spontaneous and stimulated radiative corrections. The net effect of spontaneous radiative corrections due to vacuum fluctuations is well known to be responsible for the Lamb shift. In the same spirit, the light shifts which have been studied in our experiment can perhaps be viewed as resulting from the stimulated radiative corrections induced by an intense and nonresonant em field.We thank Professor CI. Cohen-Tannoudji for many helpful discussions concerning both the experiment and its interpretation. We are indebted to Dr. M. Aymar and Dr. M. Crance for their calculation of the shift of the ground state.Strong magnetohydrodynamic activity has been observed in PDX neutral-be am-heated discharges. It occurs for fi T q^ 0.045 and is associated with a significant loss of fast ions and a drop in neutron emission. As much as 20%~-40% of the beam heating power may be lost. The instability occurs in repetitive bursts of oscillations of ^ 1 msec duration at 1-6-msec intervals. The magnetohydrodynamic activity has been dubbed the "fishbone instability" from its characteristic signature on the Mirnov coils.
A three-dimensional (3-D) hybrid gyrokinetic-MHD (magnetohydrodynamic) simulation scheme is presented. To the 3-D toroidal MHD code, MH3D-K the energetic particle component is added as gyrokinetic particles. The resulting code, mh3d-k, is used to study the nonlinear behavior of energetic particle effects in tokamaks, such as the energetic particle stabilization of sawteeth, fishbone oscillations, and alpha-particle-driven toroidal Alfvén eigenmode (TAE) modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.