Consistently obtaining super-resolution with scanning near-field optical microscopy depends almost entirely on the ability to manufacture reproducibly probes with aperture sizes smaller than 100 nm. The probe fabrication process usually involves heating an optical fiber using a CO 2 laser and melt-drawing the glass to produce a taper. A number of variables ultimately define the taper shape but the actual effects these parameters have are still not clear. In this work, the physics behind the taper formation is examined in detail for the first time and equations describing the initial taper profile and the final aperture size are derived in terms of the experimental conditions. It is shown that the taper shape is primarily determined by the laser spot size. The pulling force, although important, has a lower significance. Continuum mechanics and Stefan's law are used to show that the aperture size is closely related to the radius of the fiber at the start of the hard pull and the fiber temperature at that time. Further comparisons of experimental data with the expected taper profile exposes the heating effect of the CO 2 laser. Further analysis is given using a form of Mie theory which describes the interaction of electromagnetic fields with cylindrical structures. These results give many significant insights into the fabrication process and the formation of the aperture.
Disk-shaped ice crystals grow out from the surface of polycrystalline ice in undercooled water. The rupture of the neck of the attached disk is a means of multiplying the number of viable crystals in the surrounding undercooled water. This is a source of frazil ice in streams and a source of new crystals in metal castings which are grain-refined by stirring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.