Brain tumour diagnosis is a challenging task yet crucial for planning treatments to stop or slow the growth of a tumour. In the last decade, there has been a dramatic increase in the use of convolutional neural networks (CNN) for their high performance in the automatic segmentation of tumours in medical images. More recently, Vision Transformer (ViT) has become a central focus of medical imaging for its robustness and efficiency when compared to CNNs. In this paper, we propose a novel 3D transformer named 3D CATBraTS for brain tumour semantic segmentation on magnetic resonance images (MRIs) based on the state-of-the-art Swin transformer with a modified CNN-encoder architecture using residual blocks and a channel attention module. The proposed approach is evaluated on the BraTS 2021 dataset and achieved quantitative measures of the mean Dice similarity coefficient (DSC) that surpasses the current state-of-the-art approaches in the validation phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.