This paper gives an overview of the issues posed by the science and technology of transporting heavy oils in a sheath of lubricating water. It touches on measures of energy efficiency, industrial experience, fouling, stability, models of levitation, and future directions.
Results are given for experiments on water-lubricated pipelining of 6.01 P cylinder oil in a vertical apparatus in up- and downflow in regimes of modest flow rates, less than 3 ft/s. Measured values of the flow rates, holdup ratios, pressure gradients and flow types are presented and compared with theoretical predictions based on ideal laminar flow and on the predictions of the linear theory of stability. New flow types, not achieved in horizontal flows, are observed: bamboo waves in upflow and corkscrew waves in downflow. Nearly perfect core–annular flows are observed in downflows and these are nearly optimally efficient with values close to the ideal. The holdup ratio in upflow and fast downflow is a constant independent of the value and the ratio of values of the flow rates of oil and water. A vanishing holdup ratio can be achieved by fluidizing a long lubricated column of oil in the downflow of water. The results of experiments are compared with computations from ideal theory for perfect core–annular flow and from the linear theory of stability. Satisfactory agreements are achieved for the celerity and diagnosis of flow type. The wave is shown to be nearly stationary, convected with the oil core in this oil and all oils of relatively high viscosity. These results are robust with respect to moderate changes in the values of viscosity and surface tension. The computed wavelengths are somewhat smaller than the average length of the bamboo waves which are observed. This is explained by stretching effects of buoyancy and lubrication forces induced by the wave. Other points of agreement and disagreement are reviewed.
In this paper we study the fluidization of 1204 spheres at Reynolds numbers in the thousands using the method of distributed Lagrange multipliers. The results of the simulation are compared with a real experiment. This is the first direct numerical simulation of a real fluidized bed at the finite Reynolds number encountered in the applications. The simulations are processed like real experiments for straight lines in lot-log plots leading to power laws as in celebrated correlations of Richardson and Zaki [1954]. The numerical method allows for the first ever direct calculation of the slip velocity and other averaged values used in two-fluid continuum models. The computation and the experiment show that a single particle may be in balance under weight and drag for an interval of fluidizing velocities; the expectation that the fluidizing velocity is unique is not realized. The numerical method reveals that the dynamic pressure actually decreases slowly with the fluidizing velocity. Tentative interpretations of these new results are discussed.
A direct numerical simulation of spatially periodic wavy core flows is carried out under the assumption that the densities of the two fluids are identical and that the viscosity of the oil core is so large that it moves as a rigid solid which may nevertheless be deformed by pressure forces in the water. The waves which develop are asymmetric with steep slopes in the high-pressure region at the front face of the wave crest and shallower slopes at the low-pressure region at the lee side of the crest. The simulation gives excellent agreement with the experiments of Bai, Chen & Joseph (1992) on up flow in vertical core flow where axisymmetric bamboo waves are observed. We define a threshold Reynolds number and explore its utility; the pressure force of the water on the core relative to a fixed reference pressure is negative for Reynolds numbers below the threshold and is positive above. The wave length increases with the hold-up ratio when the Reynolds number is smaller than a second threshold and decreases for larger Reynolds numbers. We verify that very high pressures are generated at stagnation points on the wavefront. It is suggested that a positive pressure force is required to levitate the core off the wall when the densities are not matched and to centre the core when they are. A further conjecture is that the principal features which govern wavy core flows cannot be obtained from any theory in which inertia is neglected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.