Animal production systems in Australia are a significant contributor to nitrous oxide (N2O) emissions from soil, with the Australian Greenhouse Gas Inventory attributing ~25% of the N2O emissions from agricultural soils to animal production. Recent studies in New Zealand using dicyandiamide (DCD) in association with the application of urine to pastoral soil have reported reductions in N2O emission of up to 78% and reduced nitrate leaching of up to 45%. As such, the application of DCD to grazed pastures offers potential to reduce emissions resulting directly from animal production. This study was conducted on a border-check irrigated perennial pasture used for dairy production in northern Victoria. Automated enclosure chambers were linked to a fourier transformed infrared spectrometer to determine N2O emissions. The three treatments were a control, dairy cow urine (1000 kg N/ha) and dairy cow urine (1000 kg N/ha) with DCD included (10 kg/ha). The treatments were applied in mid-spring (15 September 2005) and again in mid-summer (25 January 2006) to a new area of pasture with N2O emissions measured for 120 and 70 days, respectively. Soil temperature and soil water content were monitored continuously. Soil inorganic-N was measured (0–100 mm) every 7 to 14 days for up to 120 days. Application of DCD reduced N2O emissions from a urine patch by 47% when applied in mid-spring and 27% when applied in mid-summer. The impact of the application of DCD on emissions from single urine patches lasted for ~50 days in mid-spring and 25 days in mid-summer. These reductions are lower than those reported in New Zealand studies and are likely to be related to soil conditions, principally temperature. The surface application of DCD has potential to reduce emissions from urine patches in northern Victoria; however, the effects are likely to be short-lived given the soil temperatures and high clay content typical of many Australian soils. More research is required to examine emission reduction options that are cost effective for animal production systems.
Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO 2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO 2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO 2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.