A detailed theoretical study is carried out to explore the effects of oxynitrides while considering cubic bismuth aluminate with different concentrations of nitrogen from x = 0 to x = 3. This report evaluates the structural, total, and partial densities of states (TDOS/PDOS), modification in the electronic band gap, and optical properties due to the inclusion of nitrogen based on the ab-initio method with generalized gradient approximation (GGA) as implemented in CAmbridge Serial Total Energy Package (CASTEP). All the structural parameters of BiAlO3 agree well with earlier reported values. A change in the perfect cubic structure of BiAlN3 is observed for 100% nitrogen substitution. Pure BiAlO3 is found to have an indirect band gap of 1.487 eV along with the high symmetry points between the 2p orbital of O and the 6p orbital of Bi. Reduction in band gap is reported with increasing concentration of N, due to which the material tends to behave like a conductor at a point and then the electronic band gap begins to increase as the impurity concentration increase passes this point, mainly as a consequence of the nonlinear band gap dependence on the composition of the material. A density of state (DOS) study concludes the existence of covalent bonding between O–Bi and O–Al with strong hybridization. There is an increase in the contribution of these orbitals informing energy states as the nitrogen atoms successively add up in the material BiAlO3–x N x . The BiAlN3 compound, having a perfect cubic structure, is reported here for the first time. Numerous optical characteristics have been studied comparatively at different concentrations of N, with the report that BiAlN3 has a higher value of the refractive index than bismuth aluminate, with amended optical behavior. The trend of these optical properties with respect to nitrogen concentration is also demonstrated. We propose this cubic phase of BiAlN3 as a potential material for optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.