The machining of a glass material is highly complicated due to its physical as well as chemical properties. The electrochemical discharge machining is an integrated hybrid machining process which has utilized to machining of conducting materials as well as high strength non-conducting materials having brittleness and high hardness. In this research article, the electrochemical discharge machining experimental setup was built and fabricated for machining of non-conducting materials. The electrochemical discharge machining process was applied for drilling on soda-lime glass material. The experiments were done with reference to Taguchi L 27 orthogonal array approach and scrutinized by utilizing the MINITAB 17 software. The machined depth and hole diameter results were inspected after electrochemical discharge drilling on soda-lime glass material with considering the machining conditions such as voltage, electrolyte concentration, and rotation. The observation results showed that voltage is the major parameter for machined depth and hole diameter followed by electrolyte concentration and rotation of tool electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.