The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E acc $ 25 MV͞m at a quality factor Q 0 $ 5 3 10 9 . The design goal for the cavities of the TESLA Test Facility (TTF) linac was set to the more moderate value of E acc $ 15 MV͞m. In a first series of 27 industrially produced TTF cavities the average gradient at Q 0 5 3 10 9 was measured to be 20.1 6 6.2 MV͞m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electronbeam welds. The average gradient of these cavities at Q 0 5 3 10 9 amounts to 25.0 6 3.2 MV͞m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.
After three years of preparation, two superstructures, each made of two superconducting 7-cell weakly coupled subunits, have been installed in the TESLA Test Facility linac (TTF) for the cold-and beam test. The energy stability, the HOMs damping, the frequency and the field adjustment methods were tested. The measured results confirmed expectation on the superstructure performance and proved that alternative layout for the 800 GeV upgrade of the TESLA collider, as it was proposed in TDR [1], is feasible. We report on the test and give here an overview of its results which are commented in more detail elsewhere in these Proceedings.
The superconducting combined magnets for the main linac are part of the Spanish contribution to XFEL. Each magnet consists of a superferric quadrupole for focusing and two dipoles (horizontal and vertical) for steering, glued on the beam tube. The magnets will be operated in a superfluid helium bath. The aperture is 78 mm. The quadrupole gradient is 35 T/m whereas each dipole field is about 0.04 T. This paper reports about the magnetic measurements made on the first prototype. Measured field quality matches calculated values, both at room and cold conditions. Magnetization has been also measured in all the coils, with single or combined powering. Asymmetric and strongly non-linear transfer functions have been observed when quadrupole and dipoles were powered simultaneously. On the other hand, detailed computations were made with ROXIE to understand that issue. Results matched measurements when only one set of coils was powered, but not when two of them were energized. It is likely that the effect of the transport current or the coil-ends -which are not modeled by ROXIE-could explain the difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.