Motivated by prior remote observations of a transition from striated solar coronal structures to more isotropic “flocculated” fluctuations, we propose that the dynamics of the inner solar wind just outside the Alfvén critical zone, and in the vicinity of the first surface, is powered by the relative velocities of adjacent coronal magnetic flux tubes. We suggest that large-amplitude flow contrasts are magnetically constrained at lower altitude but shear-driven dynamics are triggered as such constraints are released above the Alfvén critical zone, as suggested by global magnetohydrodynamic (MHD) simulations that include self-consistent turbulence transport. We argue that this dynamical evolution accounts for features observed by Parker Solar Probe (PSP) near initial perihelia, including magnetic “switchbacks,” and large transverse velocities that are partially corotational and saturate near the local Alfvén speed. Large-scale magnetic increments are more longitudinal than latitudinal, a state unlikely to originate in or below the lower corona. We attribute this to preferentially longitudinal velocity shear from varying degrees of corotation. Supporting evidence includes comparison with a high Mach number three-dimensional compressible MHD simulation of nonlinear shear-driven turbulence, reproducing several observed diagnostics, including characteristic distributions of fluctuations that are qualitatively similar to PSP observations near the first perihelion. The concurrence of evidence from remote sensing observations, in situ measurements, and both global and local simulations supports the idea that the dynamics just above the Alfvén critical zone boost low-frequency plasma turbulence to the level routinely observed throughout the explored solar system.
High‐resolution multispacecraft magnetic field measurements from the Magnetospheric Multiscale mission's flux‐gate magnetometer are employed to examine statistical properties of plasma turbulence in the terrestrial magnetosheath and in the solar wind. Quantities examined include wave number spectra; structure functions of order two, four, and six; probability density functions of increments; and scale‐dependent kurtoses of the magnetic field. We evaluate the Taylor frozen‐in approximation by comparing single‐spacecraft time series analysis with direct multispacecraft measurements, including evidence based on comparison of probability distribution functions. The statistics studied span spatial scales from the inertial range down to proton and electron scales. We find agreement of spectral estimates using three different methods, and evidence of intermittent turbulence in both magnetosheath and solar wind; however, evidence for subproton‐scale coherent structures, seen in the magnetosheath, is not found in the solar wind.
Direct evidence of an inertial-range turbulent energy cascade has been provided by spacecraft observations in heliospheric plasmas. In the solar wind, the average value of the derived heating rate near 1 au is ∼ 10 3 J kg −1 s −1 , an amount sufficient to account for observed departures from adiabatic expansion. Parker Solar Probe (PSP), even during its first solar encounter, offers the first opportunity to compute, in a similar fashion, a fluid-scale energy decay rate, much closer to the solar corona than any prior in-situ observations. Using the Politano-Pouquet third-order law and the von Kármán decay law, we estimate the fluid-range energy transfer rate in the inner heliosphere, at heliocentric distance R ranging from 54 R (0.25 au) to 36 R (0.17 au). The energy transfer rate obtained near the first perihelion is about 100 times higher than the average value at 1 au. This dramatic increase in the heating rate is unprecedented in previous solar wind observations, including those from Helios, and the values are close to those obtained in the shocked plasma inside the terrestrial magnetosheath.
Observed turbulence in space and astrophysics is expected to involve cascade and subsequent dissipation and heating. Contrary to standard collisional fluid turbulence, the weakly collisional magnetized plasma cascade may involve several channels of energy conversion, interchange, and spatial transport, leading eventually to the production of internal energy. This paper describes these channels of transfer and conversion, collectively amounting to a complex generalization of the Kolmogorov cascade. Channels may be described using compressible magnetohydrodynamic (MHD) and multispecies Vlasov–Maxwell formulations. Key steps are conservative transport of energy in space, parallel incompressible and compressible cascades in scale, electromagnetic work on particles driving macroscopic and microscopic flows, and pressure–strain interactions, both compressive and shear-like, that produce internal energy. A significant contrast with the collisional case is that the steps leading to the disappearance of large-scale energy in favor of internal energy are formally reversible. This property motivates a discussion of entropy, reversibility, and the relationship between dissipation with collisions and in the Vlasov system without collisions. Where feasible, examples are given from MHD and Particle in Cell simulations and from MMS observations.
The solar wind shows periods of highly Alfvénic activity, where velocity fluctuations and magnetic fluctuations are aligned or anti-aligned with each other. It is generally agreed that solar wind plasma velocity and magnetic field fluctuations observed by Parker Solar Probe (PSP) during the first encounter are mostly highly Alfvénic. However, quantitative measures of Alfvénicity are needed to understand how the characterization of these fluctuations compares with standard measures from prior missions in the inner and outer heliosphere, in fast wind and slow wind, and at high and low latitudes. To investigate this issue, we employ several measures to quantify the extent of Alfvénicity -the Alfvén ratio r A , normalized cross helicity σ c , normalized residual energy σ r , and the cosine of angle between velocity and magnetic fluctuations cos θ vb . We show that despite the overall impression that the Alfvénicity is large in the solar wind sampled by PSP during the first encounter, during some intervals the cross helicity starts decreasing at very large scales. These length-scales (often > 1000d i ) are well inside inertial range, and therefore, the suppression of cross helicity at these scales cannot be attributed to kinetic physics. This drop at large scales could potentially be explained by large-scale shears present in the inner heliosphere sampled by PSP. In some cases, despite the cross helicity being constant down to the noise floor, the residual energy decreases with scale in the inertial range. These results suggest that it is important to consider all these measures to quantify Alfvénicity. arXiv:1912.07181v1 [physics.space-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.