It has been acknowledged that smartphone GNSS observations suffer not only from high measurement noise and multipath but also from anomalies such as duty cycling and gradual accumulation of phase errors. These phenomena importantly constrain the application of smartphone phase measurement to high-precision techniques such as RTK or PPP. Hence, we aim at a comprehensive characterization of smartphone signal quality, including carrier-to-noise density ratio, measurement noise and anomalies present in observables with the focus on the impact of duty-cycling mode. The analysis confirms the abnormal properties of smartphone measurements related to the divergence between code and phase data and poor quality of the latter. To address these limitations, the second objective is to assess the smartphone medium-to long-range code-based relative positioning. This task includes the validation of the weighting scheme suited for handling the low quality of smartphone observations. The results show that it is feasible to use a sparse countrywide GNSS network as reference stations for codebased relative positioning. Even with the baselines over 100 km, we can significantly enhance the positioning with respect to a stand-alone solution and reach the submeter level of horizontal coordinate accuracy. We have also noticed a discernible benefit from the C/N0-dependent weighting scheme, which is superior to the satellite elevation one.
This paper provides the methodology and performance assessment of multi-GNSS signal processing for the detection of small-scale high-rate dynamic displacements. For this purpose, we used methods of relative (RTK) and absolute positioning (PPP), and a novel direct signal processing approach. The first two methods are recognized as providing accurate information on position in many navigation and surveying applications. The latter is an innovative method for dynamic displacement determination with the use of GNSS phase signal processing. This method is based on the developed functional model with parametrized epoch-wise topocentric relative coordinates derived from filtered GNSS observations. Current regular kinematic PPP positioning, as well as medium/long range RTK, may not offer coordinate estimates with subcentimeter precision. Thus, extended processing strategies of absolute and relative GNSS positioning have been developed and applied for displacement detection. The study also aimed to comparatively analyze the developed methods as well as to analyze the impact of combined GPS and BDS processing and the dependence of the results of the relative methods on the baseline length. All the methods were implemented with in-house developed software allowing for high-rate precise GNSS positioning and signal processing. The phase and pseudorange observations collected with a rate of 50 Hz during the field test served as the experiment’s data set. The displacements at the rover station were triggered in the horizontal plane using a device which was designed and constructed to ensure a periodic motion of GNSS antenna with an amplitude of ~3 cm and a frequency of ~4.5 Hz. Finally, a medium range RTK, PPP, and direct phase observation processing method demonstrated the capability of providing reliable and consistent results with the precision of the determined dynamic displacements at the millimeter level. Specifically, the research shows that the standard deviation of the displacement residuals obtained as the difference between a benchmark-ultra-short baseline RTK solution and selected scenarios ranged between 1.1 and 3.4 mm. At the same time, the differences in the mean amplitude of the oscillations derived from the established scenarios did not exceed 1.3 mm, whereas the frequency of the motion detected with the use of Fourier transformation was the same.
This contribution presents and assesses the methodology aiming at the characterization of the structural vibrations with high-rate GNSS measurements. As commonly employed precise point positioning (PPP) based on ionosphere-free linear combination of undifferenced signals may not meet the high requirements in terms of displacement precision, a modified processing strategy has been proposed. The algorithms were implemented in the own-developed GNSS processing software and validated using the designed experiment. For this purpose, we have set up a field experiment taking advantage of the prototype shake-table, which simulated the dynamic horizontal displacements of the GNSS antenna. The device ensured a periodic motion of the antenna with modifiable characteristics, namely amplitude and frequency. In this experiment, we have set the amplitudes from 1.5 to 9 mm and the frequency to 3.80 Hz. As a dataset, we have used 100 Hz GPS, Galileo, and BDS measurements. The results confirmed a high applicability of the enhanced PPP processing strategy for precise displacement detection. Specifically, it was feasible to obtain the dynamic displacements with precision at the level of millimeters. The differences between the PPP-derived amplitude and the true amplitude of the simulated displacements were in the range of 0.5–1.3 mm, whereas the difference between the detected and benchmark frequency did not exceed 0.026 Hz. Hence, the proposed methodology allows meeting the specific demands of structural displacement monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.