Abstract. Sulfur dioxide emissions from the Popocatépetl volcano in central Mexico were measured during the MI-LAGRO field campaign in March 2006. A stationary scanning DOAS (Differential Optical Absorption Spectrometer) was used to monitor the SO 2 emissions from the volcano and the results were compared with traverses done with a COSPEC from the ground and a DOAS instrument on board an ultra-light aircraft. Daytime evolutions as well as day-today variation of the SO 2 emissions are reported. A value of 2.45±1.39 Gg/day of SO 2 is reported from all the daily averages obtained during the month of March 2006, with large variation in maximum and minimum daily averages of 5.97 and 0.56 Gg/day, respectively. The large short-term fluctuations in the SO 2 emissions obtained could be confirmed through 2-D visualizations of the SO 2 plume measured with a scanning imaging infrared spectrometer. This instrument, based on the passive detection of thermal radiation from the volcanic gas and analysis with FTIR spectrometry, is used for the first time for plume visualization of a specific volcanic gas. A 48-h forward trajectory analysis indicates that the volcanic plume was predominantly directed towards the Puebla/Tlaxcala region (63%), followed by the Mexico City and Cuernavaca/Cuautla regions with 19 and 18% occurrences, respectively. 25% of the modeled trajectories going towards the Puebla region reached altitudes lower than 4000 m a.s.l. but all trajectories remained over this altitude for the other two regions.
Abstract. Sulfur dioxide emissions from Popocatépetl volcano in central Mexico were measured during the MILAGRO field campaign in March 2006. A stationary scanning DOAS (Differential Optical Absorption Spectrometer) was used to monitor the SO2 emissions from the volcano and the results were compared with traverses done with a COSPEC from the ground and a DOAS instrument on board an ultra-light aircraft. Daytime evolutions as well as day-to-day variation of the SO2 emissions are reported. A value of 2.45±1.39 Gg/day of SO2 is reported from all the daily averages obtained during the month of March 2006, with large variation in maximum and minimum daily averages of 5.97 and 0.56 Gg/day, respectively. The large short-term fluctuations in the SO2 emissions obtained could be confirmed through 2-D visualizations of the SO2 plume measured with a scanning imaging infrared spectrometer. This instrument, based on the passive detection of thermal radiation from the volcanic gas and analysis with FTIR spectrometry, is used for the first time for plume visualization of a specific volcanic gas. A 48-h forward trajectory analysis indicates that the volcanic plume was predominately directed towards the Puebla/Tlaxcala region (63%), followed by the Mexico City and Cuernavaca/Cuautla regions with 19 and 18% occurrences, respectively. 25% of the modeled trajectories going towards the Puebla region reached altitudes lower than 4000 m a.s.l. and all trajectories remained over this altitude for the other two regions.
Ozone concentrations have been increasing in the Guadalajara Metropolitan Area (GMA) in Mexico. To help devise efficient mitigation measures, we investigated the ozone formation regime by a chemical transport model (CTM) system WRF-CMAQ. The CTM system was validated by field measurement data of ground-level volatile organic compounds (VOC) and vertical profiles of ozone in GMA as well as in the Mexico City Metropolitan Area (MCMA). By conducting CTM simulations with modified emission rates of VOC and nitrogen oxides (NO x ), the ozone formation regime in GMA was found to lie between VOC-sensitive and NO x -sensitive regimes. The result is consistent with the relatively large VOC/NO x emission ratio in GMA compared to that in MCMA where the ozone formation regime is in the VOC-sensitive regime.
Abstract. This work presents ground based differential optical absorption spectroscopy (DOAS) measurements of nitrogen dioxide (NO 2 ) during the MILAGRO field campaign in March 2006 at the Tenango del Aire research site located to the southeast of Mexico City. The DOAS NO 2 column density measurements are used in conjunction with ceilometer, meteorological and surface nitric oxide (NO), nitrogen oxides (NO x ) and total reactive nitrogen (NO y ) measurements to analyze pollution transport events to the southeast of Mexico City during the MILARGO field campaign. The study divides the data set into three case study pollution transport events that occurred at the Tenango del Aire research site. The unique data set is then used to provide an in depth analysis of example days of each of the pollution transport events. An in depth analysis of 13 March 2006, a Case One day, shows the transport of several air pollution plumes during the morning through the Tenango del Aire research site when southerly winds are present and demonstrates how DOAS tropospheric NO 2 vertical column densities (VCD), surface NO 2 mixing ratios and ceilometer data are used to determine the vertical homogeneity of the pollution layer. The analysis of 18 March 2006, a Case Two day, shows that when northerly winds are present for the entire day, the air at the Tenango del Aire research site is relatively clean and no major pollution plumes are detected. Case 3 days are characterized by relatively clean air throughout the morning with large DOAS NO 2 enhancements detected in the afternoon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.