Air-powder interactions are of practical importance in the production of pharmaceuticals, food and high value added chemicals manufactured using powders. For examples, air-powder effects enable consistent and effective dosing of fine cohesive powders into dies on high productivity rotary presses due to the suction fill effect. A purpose built experimental testing rig was developed and calibrated in order to develop a basic understanding of effect of air pressure on the mass flow rate of fine and cohesive powders. The powder materials were selected to enable the study of the effect of particle properties, such as size and density, and processing conditions such as differential air pressure, on the mass flow rate of powders. The models available in the literature developed for coarse free flowing sands under differential pressure were found inadequate to describe the experimental observations and to predict the flow behaviour of fine and cohesive powders. A new powder flow model was developed using established dimensional analysis methods based on the experimental data. The proposed model includes terms that account for the effect of differential pressure and reduces to the classic Beverloo model in absence of differential pressure. The models was validated and can be used for formulation and process design for flow regimes where air-powder interactions are important.
In pharmaceutical tablet manufacturing, the powder formulation is filled into a die and compacted into a tablet using rigid punches. Die fill is important because it limits the 15 productivity of tablet presses and determines key quality attributes of tablets including weight and content uniformity.
Graphical abstract Highlights• Vacuum applied at the exit of an arching hopper assists flow initiation.• A small reduction of pressure changes the critical orifice diameter significantly.• A dimensional model was developed to predict the pressure required to initiate flow. 2 AbstractThe discharge of powders from hoppers usually takes place in open atmosphere. However, in powder pressing industries (e.g. manufacturing of pharmaceutical tablets, detergents, ceramics, powder metallurgy etc.) there are handling operations where powders are filled into closed cavities such as dies. During this process the air pressure is increased as powder is delivered into the die. At the same time typical tablet production equipment creates a suction effect. A critical orifice measurement apparatus was developed to study powder flow initiation from an arching state into an enclosure where the air pressure is reduced. It was shown that a very small reduction of pressure changed the critical orifice diameter significantly. Dimensional analysis was carried out to relate powder properties (particle size and density) and processing parameters (geometry of the system and differential pressure necessary to break the arch). A relationship was developed to calculate the pressure difference necessary to initiate powder flow. The relationship has two empirical parameters which are calibrated by performing simple experiments using the testing rig developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.