contributionsBulk-surface correspondence in Weyl semimetals assures the formation of topological "Fermi-arc" surface bands whose existence is guaranteed by bulk Weyl nodes. By investigating three distinct surface terminations of the ferromagnetic semimetal Co 3 Sn 2 S 2 we verify spectroscopically its classification as a time reversal symmetry broken Weyl semimetal. We show that the distinct surface potentials imposed by three different terminations modify the Fermi-arc contour and Weyl node connectivity. On the Sn surface we identify intra-Brillouin zone Weyl node connectivity of Fermi-arcs, while on Co termination the connectivity is across adjacent Brillouin zones. On the S surface Fermiarcs overlap with non-topological bulk and surface states that ambiguate their connectivity and obscure their exact identification. By these we resolve the topologically protected electronic properties of a Weyl semimetal and its unprotected ones that can be manipulated and engineered.Topological semimetals lend a unique experimental opportunity to investigate both bulk and surface topological properties by probing their topological surface states (1-6). Unlike in gapped topological system the dispersion of the topological surface bands is intimately correlated with the topological bulk bands dispersion (7,8). Prime examples are Weyl and Dirac semimetals whose nontrivial topological properties arise from the existence of nondegenerate band-touching points, termed Weyl nodes, in the electronic bulk band structure. Bulk Weyl nodes are formed under broken inversion or time reversal symmetry. They exhibit certain chirality and give rise to the formation of open-contour "Fermi-arc" surface bands that emanate from a certain Weyl node and terminate at another with opposite chirality within the surface two dimensional momentum space. Due to this surface-bulk correspondence, the dispersion of the Fermi-arcs reflects the
Fermi arc states on the surface of a Weyl semimetal are revealed by the structure of their wave function.
The physical realization of Chern insulators is of fundamental and practical interest, as they are predicted to host the quantum anomalous Hall (QAH) effect and topologically protected chiral edge states which can carry dissipationless current. Current realizations of the QAH state often require complex heterostructures and sub-Kelvin temperatures, making the discovery of intrinsic, high temperature QAH systems of significant interest. In this work we show that time-reversal symmetry breaking Weyl semimetals, being essentially stacks of Chern insulators with inter-layer coupling, may provide a new platform for the higher temperature realization of robust chiral edge states. We present combined scanning tunneling spectroscopy and theoretical investigations of the magnetic Weyl semimetal, Co3Sn2S2. Using modeling and numerical simulations we find that depending on the strength of the interlayer coupling, chiral edge states can be localized on partially exposed kagome planes on the surfaces of a Weyl semimetal. Correspondingly, our dI/dV maps on the kagome Co3Sn terraces show topological states confined to the edges which display linear dispersion. This work provides a new paradigm for realizing chiral edge modes and provides a pathway for the realization of higher temperature QAH effect in magnetic Weyl systems in the two-dimensional limit.
Exotic electronic states are realized in novel quantum materials. This field is revolutionized by the topological classification of materials. Such compounds necessarily host unique states on their boundaries. Scanning tunneling microscopy studies of these surface states have provided a wealth of spectroscopic characterization, with the successful cooperation of ab initio calculations. The method of quasiparticle interference imaging proves to be particularly useful for probing the dispersion relation of the surface bands. Herein, how a variety of additional fundamental electronic properties can be probed via this method is reviewed. It is demonstrated how quasiparticle interference measurements entail mesoscopic size quantization and the electronic phase coherence in semiconducting nanowires; helical spin protection and energy-momentum fluctuations in a topological insulator; and the structure of the Bloch wave function and the relative insusceptibility of topological electronic states to surface potential in a topological Weyl semimetal.
We report a phenomenon of strain-driven shape transition in the growth of nanoscale self-organized endotaxial CoSi 2 islands on Si (100) substrates. Small square shaped islands as small as 15×15 nm 2 have been observed. Islands grow in the square shape following the four fold symmetry of the Si (100) substrate, up to a critical size of 67× 67 nm 2 . A shape transition takes place at this critical size. Larger islands adopt a rectangular shape with ever increasing length and the width decreasing to an asymptotic value of ~25 nm. This produces long wires of nearly constant width.We have observed nanowire islands with aspect ratios as large as ~ 20:1. The long nanowire heterostructures grow partly above (~ 3 nm) the surface, but mostly into (~17 nm) the Si substrate. These self-organized nanostructures behave as nanoscale Schottky diodes. They may be useful in Si-nanofabrication and find potential application in constructing nano devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.