In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals, petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for a level of noise of around 0.5–10%, the system exhibited a sequence of transitions among attractors that mimics the sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a continuous system using the Glass model of differential equations, that can be considered as a first approximation of kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis, providing predictions on the population dynamics of cells with different genetic configurations during development.
Humans show a natural tendency to discount bad news while incorporating good news into beliefs (the "good news-bad news effect"), an effect that may help explain seemingly irrational risk taking. Understanding how this bias develops with age is important because adolescents are prone to engage in risky behavior; thus, educating them about danger is crucial. We reveal a striking valence-dependent asymmetry in how belief updating develops with age. In the ages tested (9-26 y), younger age was associated with inaccurate updating of beliefs in response to undesirable information regarding vulnerability. In contrast, the ability to update beliefs accurately in response to desirable information remained relatively stable with age. This asymmetry was mediated by adequate computational use of positive but not negative estimation errors to alter beliefs. The results are important for understanding how belief formation develops and might help explain why adolescents do not respond adequately to warnings.decision making | learning | optimism
A long-standing puzzle in vision is the assignment of illusory brightness values to visual territories based on the characteristics of their edges (the Craik-O'Brien-Cornsweet effect). Here we show that the perception of the equiluminant territories flanking the Cornsweet edge varies according to whether these regions are more likely to be similarly illuminated surfaces having the same material properties or unequally illuminated surfaces with different properties. Thus, if the likelihood is increased that these territories are surfaces with similar reflectance properties under the same illuminant, the Craik-O'BrienCornsweet effect is diminished; conversely, if the likelihood is increased that the adjoining territories are differently reflective surfaces receiving different amounts of illumination, the effect is enhanced. These findings indicate that the Craik-O'BrienCornsweet effect is determined by the relative probabilities of the possible sources of the luminance profiles in the stimulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.