The current work presents the characterization and comparison of the mechanical response of three different industrial forms of polyethylene. Specifically, high-density polyethylene (HDPE), ultra high molecular weight polyethylene (UHMWPE), and cross-linked polyethylene (PEX) were tested in compression as a function of temperature (−75 to 100°C) and strain-rate (10 −4 to 2,600 s −1 ). The responses of UHMWPE and PEX are very similar, whereas HDPE exhibits some differences. The HDPE samples display a significantly higher yield stress followed by a flat flow behavior. Conversely UHMWPE and PEX both exhibit significant strain hardening after yield. The temperature and strain-rate dependence are captured by simple linear and logarithmic fits over the full range of conditions investigated. The yield behavior is presented in terms of an empirical mapping function that is extended to analytically solve for the mapping constant. The power-law dependence on strain-rate observed in some polymers is explained using this mapping function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.